3,483 research outputs found

    On the number of certain subgraphs contained in graphs with a given number of edges

    Full text link

    The number of subsets of integers with no kk-term arithmetic progression

    Get PDF
    Addressing a question of Cameron and Erd\Ho s, we show that, for infinitely many values of nn, the number of subsets of {1,2,,n}\{1,2,\ldots, n\} that do not contain a kk-term arithmetic progression is at most 2O(rk(n))2^{O(r_k(n))}, where rk(n)r_k(n) is the maximum cardinality of a subset of {1,2,,n}\{1,2,\ldots, n\} without a kk-term arithmetic progression. This bound is optimal up to a constant factor in the exponent. For all values of nn, we prove a weaker bound, which is nevertheless sufficient to transfer the current best upper bound on rk(n)r_k(n) to the sparse random setting. To achieve these bounds, we establish a new supersaturation result, which roughly states that sets of size Θ(rk(n))\Theta(r_k(n)) contain superlinearly many kk-term arithmetic progressions. For integers rr and kk, Erd\Ho s asked whether there is a set of integers SS with no (k+1)(k+1)-term arithmetic progression, but such that any rr-coloring of SS yields a monochromatic kk-term arithmetic progression. Ne\v{s}et\v{r}il and R\"odl, and independently Spencer, answered this question affirmatively. We show the following density version: for every k3k\ge 3 and δ>0\delta>0, there exists a reasonably dense subset of primes SS with no (k+1)(k+1)-term arithmetic progression, yet every USU\subseteq S of size UδS|U|\ge\delta|S| contains a kk-term arithmetic progression. Our proof uses the hypergraph container method, which has proven to be a very powerful tool in extremal combinatorics. The idea behind the container method is to have a small certificate set to describe a large independent set. We give two further applications in the appendix using this idea.Comment: To appear in International Mathematics Research Notices. This is a longer version than the journal version, containing two additional minor applications of the container metho

    Maximising the number of cycles in graphs with forbidden subgraphs

    Get PDF
    Fix k2k \ge 2 and let HH be a graph with χ(H)=k+1\chi(H) = k+1 containing a critical edge. We show that for sufficiently large n,n, the unique nn-vertex HH-free graph containing the maximum number of cycles is Tk(n)T_k(n). This resolves both a question and a conjecture of Arman, Gunderson and Tsaturian \cite{Gund1}

    On Approximating the Number of kk-cliques in Sublinear Time

    Full text link
    We study the problem of approximating the number of kk-cliques in a graph when given query access to the graph. We consider the standard query model for general graphs via (1) degree queries, (2) neighbor queries and (3) pair queries. Let nn denote the number of vertices in the graph, mm the number of edges, and CkC_k the number of kk-cliques. We design an algorithm that outputs a (1+ε)(1+\varepsilon)-approximation (with high probability) for CkC_k, whose expected query complexity and running time are O\left(\frac{n}{C_k^{1/k}}+\frac{m^{k/2}}{C_k}\right)\poly(\log n,1/\varepsilon,k). Hence, the complexity of the algorithm is sublinear in the size of the graph for Ck=ω(mk/21)C_k = \omega(m^{k/2-1}). Furthermore, we prove a lower bound showing that the query complexity of our algorithm is essentially optimal (up to the dependence on logn\log n, 1/ε1/\varepsilon and kk). The previous results in this vein are by Feige (SICOMP 06) and by Goldreich and Ron (RSA 08) for edge counting (k=2k=2) and by Eden et al. (FOCS 2015) for triangle counting (k=3k=3). Our result matches the complexities of these results. The previous result by Eden et al. hinges on a certain amortization technique that works only for triangle counting, and does not generalize for larger cliques. We obtain a general algorithm that works for any k3k\geq 3 by designing a procedure that samples each kk-clique incident to a given set SS of vertices with approximately equal probability. The primary difficulty is in finding cliques incident to purely high-degree vertices, since random sampling within neighbors has a low success probability. This is achieved by an algorithm that samples uniform random high degree vertices and a careful tradeoff between estimating cliques incident purely to high-degree vertices and those that include a low-degree vertex

    On two problems in Ramsey-Tur\'an theory

    Full text link
    Alon, Balogh, Keevash and Sudakov proved that the (k1)(k-1)-partite Tur\'an graph maximizes the number of distinct rr-edge-colorings with no monochromatic KkK_k for all fixed kk and r=2,3r=2,3, among all nn-vertex graphs. In this paper, we determine this function asymptotically for r=2r=2 among nn-vertex graphs with sub-linear independence number. Somewhat surprisingly, unlike Alon-Balogh-Keevash-Sudakov's result, the extremal construction from Ramsey-Tur\'an theory, as a natural candidate, does not maximize the number of distinct edge-colorings with no monochromatic cliques among all graphs with sub-linear independence number, even in the 2-colored case. In the second problem, we determine the maximum number of triangles asymptotically in an nn-vertex KkK_k-free graph GG with α(G)=o(n)\alpha(G)=o(n). The extremal graphs have similar structure to the extremal graphs for the classical Ramsey-Tur\'an problem, i.e.~when the number of edges is maximized.Comment: 22 page

    A note on fractional covers of a graph

    Get PDF
    A fractional colouring of a graph GG is a function that assigns a non-negative real value to all possible colour-classes of GG containing any vertex of GG, such that the sum of these values is at least one for each vertex. The fractional chromatic number is the minimum sum of the values assigned by a fractional colouring over all possible such colourings of GG. Introduced by Bosica and Tardif, fractional covers are an extension of fractional colourings whereby the real-valued function acts on all possible subgraphs of GG belonging to a given class of graphs. The fractional chromatic number turns out to be a special instance of the fractional cover number. In this work we investigate fractional covers acting on (k+1)(k+1)-clique-free subgraphs of GG which, although sharing some similarities with fractional covers acting on kk-colourable subgraphs of GG, they exhibit some peculiarities. We first show that if a simple graph G2G_2 is a homomorphic image of a simple graph G1G_1, then the fractional cover number defined on the (k+1)(k+1)-clique-free subgraphs of G1G_1 is bounded above by the corresponding number of G2G_2. We make use of this result to obtain bounds for the associated fractional cover number of graphs that are either nn-colourable or a ⁣: ⁣ba\!:\!b-colourable.Comment: 8 page
    corecore