116 research outputs found

    A Performance evaluation of several ATM switching architectures

    Get PDF
    The goal of this thesis is to evaluate the performance of three Asynchronous Transfer Mode switching architectures. After examining many different ATM switching architectures in literature, the three architectures chosen for study were the Knockout switch, the Sunshine switch, and the Helical switch. A discrete-time, event driven system simulator, named ProModel, was used to model the switching behavior of these architectures. Each switching architecture was modeled and studied under at least two design configurations. The performance of the three architectures was then investigated under three different traffic types representative of traffic found in B-ISDN: random, constant bit rate, and bursty. Several key performance parameters were measured and compared between the architectures. This thesis also explored the implementation complexities and fault tolerance of the three selected architectures

    Quality of service over ATM networks

    Get PDF
    PhDAbstract not availabl

    Application of Asynchronous Transfer Mode (Atm) technology to Picture Archiving and Communication Systems (Pacs): A survey

    Full text link
    Broadband Integrated Services Digital Network (R-ISDN) provides a range of narrowband and broad-band services for voice, video, and multimedia. Asynchronous Transfer Mode (ATM) has been selected by the standards bodies as the transfer mode for implementing B-ISDN; The ability to digitize images has lead to the prospect of reducing the physical space requirements, material costs, and manual labor of traditional film handling tasks in hospitals. The system which handles the acquisition, storage, and transmission of medical images is called a Picture Archiving and Communication System (PACS). The transmission system will directly impact the speed of image transfer. Today the most common transmission means used by acquisition and display station products is Ethernet. However, when considering network media, it is important to consider what the long term needs will be. Although ATM is a new standard, it is showing signs of becoming the next logical step to meet the needs of high speed networks; This thesis is a survey on ATM, and PACS. All the concepts involved in developing a PACS are presented in an orderly manner. It presents the recent developments in ATM, its applicability to PACS and the issues to be resolved for realising an ATM-based complete PACS. This work will be useful in providing the latest information, for any future research on ATM-based networks, and PACS

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    ATM network impairment to video quality

    Get PDF
    Includes bibliographical reference

    Performance measurement methodology for integrated services networks

    Get PDF
    With the emergence of advanced integrated services networks, the need for effective performance analysis techniques has become extremely important. Further advancements in these networks can only be possible if the practical performance issues of the existing networks are clearly understood. This thesis is concerned with the design and development of a measurement system which has been implemented on a large experimental network. The measurement system is based on dedicated traffic generators which have been designed and implemented on the Project Unison network. The Unison project is a multisite networking experiment for conducting research into the interconnection and interworking of local area network based multi-media application systems. The traffic generators were first developed for the Cambridge Ring based Unison network. Once their usefulness and effectiveness was proven, high performance traffic generators using transputer technology were built for the Cambridge Fast Ring based Unison network. The measurement system is capable of measuring the conventional performance parameters such as throughput and packet delay, and is able to characterise the operational performance of network bridging components under various loading conditions. In particular, the measurement system has been used in a 'measure and tune' fashion in order to improve the performance of a complex bridging device. Accurate measurement of packet delay in wide area networks is a recognised problem. The problem is associated with the synchronisation of the clocks between the distant machines. A chronological timestamping technique has been introduced in which the clocks are synchronised using a broadcast synchronisation technique. Rugby time clock receivers have been interfaced to each generator for the purpose of synchronisation. In order to design network applications, an accurate knowledge of the expected network performance under different loading conditions is essential. Using the measurement system, this has been achieved by examining the network characteristics at the network/user interface. Also, the generators are capable of emulating a variety of application traffic which can be injected into the network along with the traffic from real applications, thus enabling user oriented performance parameters to be evaluated in a mixed traffic environment. A number of performance measurement experiments have been conducted using the measurement system. Experimental results obtained from the Unison network serve to emphasise the power and effectiveness of the measurement methodology

    Congestion Avoidance Testbed Experiments

    Get PDF
    DARTnet provides an excellent environment for executing networking experiments. Since the network is private and spans the continental United States, it gives researchers a great opportunity to test network behavior under controlled conditions. However, this opportunity is not available very often, and therefore a support environment for such testing is lacking. To help remedy this situation, part of SRI's effort in this project was devoted to advancing the state of the art in the techniques used for benchmarking network performance. The second objective of SRI's effort in this project was to advance networking technology in the area of traffic control, and to test our ideas on DARTnet, using the tools we developed to improve benchmarking networks. Networks are becoming more common and are being used by more and more people. The applications, such as multimedia conferencing and distributed simulations, are also placing greater demand on the resources the networks provide. Hence, new mechanisms for traffic control must be created to enable their networks to serve the needs of their users. SRI's objective, therefore, was to investigate a new queueing and scheduling approach that will help to meet the needs of a large, diverse user population in a "fair" way
    • …
    corecore