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The primary purpose of this work is to propose a new scheduling approach 

of multimedia data streams in real-time communication and also to study and analyze 

the various existing scheduling approaches. Various techniques involved in scheduling 

multimedia data streams, like synchronization and jitter control techniques have been 

studied. An architecture for a general scheduling algorithm is discussed. A scheduling 

algorithm which supports a separate virtual connection for each information type 

as well as control data is proposed. The multiple data streams are supported by 

multiple channels on an ATM network. This algorithm will also deal with the issues 

of "continuity" and acoordinationin the multimedia data streams over the network. 

The implementation issues of this scheduling algorithm have been identified and 

studied. 
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CHAPTER 1 

INTRODUCTION 

1.1. Multimedia Communication 

Real-time Multimedia applications are those that require information to be trans-

mitted in a continuous mode from one location to another [13]. In a single medium 

data stream, the continuity of the data may be interrupted by gaps and jitters. To 

support time-dependent data, multimedia applications require network and operating 

system components that ensure timely delivery of data. In addition, data of many 

applications such as video-conferencing and computer-supported collaborative work 

require coordination of multiple data sources inspite of the asynchronous nature of 

the network. The characteristics of multimedia data vary widely, and impose strong 

requirements on the underlying communication system. In considering multiple data 

streams in a distributed multimedia application, we consider the issues of coordination 

and temporal synchronization over related data streams. For multimedia connections, 

the large variation in data sizes of differing data types indicates a large variation in 

utilized bandwidth during the life of a connection. Due to this variation, channel 

capacity can be periodically exceeded and loss of destination timing can occur. Also, 

our scheduling algorithm must have the capability to present time-dependent data to 

the user. Time dependencies of multimedia data can be implied during creation, e.g. 

sequences of live data images along with sequences of live audio frames. These time 

dependencies must be supported by the system. A multimedia information system 

must be able to overcome any system delays caused by storage, computation and 



communication latencies. These latencies are usually random in nature. The inte-

gration of several media in the same application on the same network and the nature 

of the application, induce specific requirements such as high throughput, low delays 

and multicast facilities. 

To support presentation of time-dependent data, scheduling disciplines associated 

with real-time operating systems are necessary. However, the real-time requirements 

can be relaxed since data delivery can tolerate some occasional lateness, i.e., catas-

trophic results will not occur when data are not delivered in time. 

The work in data communications has been applied to live, periodic sources, such 

as packet audio and video, and for applications that do not exceed the capacity of the 

communication channel. Packet delivery variations at the destination are effectively 

eliminated by buffering and the introduction of a constant time offset resulting in a 

reshaping of the distribution of arriving packets to reduce delay variance. 

A scheduling algorithm which supports a separate virtual connection for each 

information type as well as control data is considered. This algorithm will also deal 

with the issues of "continuity" and "coordination", in the multimedia data streams 

over the network. Practical considerations for applying the derived schedule are also 

considered. 

1.2. Contribution of the Thesis 

The primary purpose of this work is to propose a new scheduling approach of mul-

timedia data streams in real-time communication and also to study and analyze the 

various existing scheduling approaches. 

The thesis is organized as follows: Chapter 1 provides a brief introduction of real-

time communication. Chapter 2 discusses the real-time communication issues along 



with the summary of existing scheduling approaches; the need for synchronization of 

the multiple data channels and some current synchronization techniques; the need 

for jitter control schemes in real-time communication and the existing jitter control 

schemes. In Chapter 3, the new algorithm proposed is discussed and the various 

implementation issues associated are discussed. In Chapter 4, an architecture which 

provides a framework for comparing various scheduling algorithms is discussed. 



CHAPTER 2 

RELATED WORK 

The definitions of the various terms used in real-time communication are as follows. 

2.1. Definitions 

Real-time applications: 

Applications that require information to be transmitted in a continuous mode from 

one location to another are called real-time applications. Multimedia conferencing 

represents a typical real-time application. In general, high connectivity is needed 

for real-time applications. A guaranteed bandwidth is required to ensure real-time 

consistency, and to offer the throughput required by the different media. 

Non-real-time applications: 

Applications that do not require information to be transmitted in a continuous mode 

from one location to another are called non-real-time applications. Non-real-time 

applications such as multimedia mail, are less demanding than real-time applications 

in terms of throughput and delay. Multicast services and synchronization at presen-

tation time have to be offered. 

Guaranteed service: 

Guaranteed service is the traditional form of real-time service which involves pre-

computed worst-case delay bounds. With this kind of service, if the network hardware 

is functioning, and a client is conforming to its traffic characterization, then the service 

commitment will always be met. 



Predicted service: 

Predicted service uses the measured performance of the network in computing delay 

bounds of real-time traffic. 

Jitter: 

The variation in the delay in receiving a packet at the receiver is called jitter. This 

delay is introduced by the network. 

Sharing: 

Queueing is a fundamental consequence of the statistical sharing that occurs in packet 

switched networks. The idea of statistical sharing means that there are several sources 

using the available bandwidth. Any approach to real-time traffic scheduling, should 

treat the aggregation of traffic as an important issue. The network must be shared 

in such a way that clients (1) get better service than if there were no sharing ( as 

in a circuit-switched or TDM network) and (2) are protected from the potentially 

negative effects of sharing (most obviously the disruption of service caused by sharing 

with a mis-behaving source that overloads the resource). 

Isolation: 

Isolation is the more fundamental goal for real-time traffic - it provides guaranteed 

service for well behaved clients and punishes misbehaving sources. 

Jitter shifting: 

Scheduling algorithms can be thought of as methods for "jitter shifting", in which 

explicit actions are taken to transfer the jitter among flows in a controlled and char-

acterized way [4]. A wide range of queue scheduling algorithms are developed and 

they ought to be examined in the perspective of the extent to which they perform 

isolation and the extent to which they provide sharing. 



Play back applications: 

The real-time applications which we consider are called play-back applications. In a 

play-back application, the source takes some signal, packetizes it and then transmits 

over the network. The network inevitably introduces some variation in the delay 

of each delivered packet. The receiver depacketizes the data and then attempts to 

faithfully play back the signal. This is done by buffering the incoming data to re-

move the network induced jitter and then replaying the signal at some designated 

play-back point. Any data that arrives before its associated play-back point can be 

used to reconstruct the signal and data arriving after the play-back point is useless 

in reconstructing the real-time signal. Not all real-time applications are play-back 

applications - but a vast majority of them fit into this paradigm. 

Based on the play-back point real-time applications can be classified as: 

• Rigid applications. 

• Adaptive applications. 

Some real-time applications will use "a priori" delay bound advertised by the net-

work to set the play-back point and will keep the play-back point regardless of the 

actual delays experienced. These are called rigid applications. For other applications, 

the receiver will measure the network delay experienced by arriving packets and then 

adaptively move the play-back point to the minimal delay that still produces a suf-

ficiently low loss rate. These applications are called adaptive. Adaptive applications 

have an earlier play-back point than rigid applications, and will suffer less perfor-

mance degradation due to delay. The idea of adaptive applications is not relevant to 

circuit switched networks, which do not have jitter due to queueing. However, video 

frames can be made adaptive by dropping or replaying a frame as necessary, and voice 



can adapt imperceptibly by adjusting silent periods. It should be noted that there 

are typically limits to this adaptability. For instance, once the delay reaches a certain 

level, it becomes difficult to carry out such interactive conservations. 

2.2. Scheduling Algorithms 

Scheduling algorithms for real-time data streams are those schemes which support the 

presentation of time-dependent data. The design of the scheduling approach must 

account for the playout times for individual data elements. Also, it must account for 

latencies in each system component used in the delivery of data, from its source to 

destination. Therefore, specific scheduling is required for storage devices, the CPU, 

and communication resources. The work in data communication has been applied 

to live, periodic data sources such as packet audio and video, and for applications 

that do not exceed the capacity of the channel. These applications typically use a 

point-to-point configuration, since there is seldom any need to deliver synchronous 

data streams from multiple independent live sources. 

In stored-data applications, time-dependencies must be managed. Unlike live 

data, which are typically periodic during acquisition and presentation, stored data 

can require aperiodic playout, and can be retrieved from storage at arbitrary times 

prior to presentation to the user. The storage for audio and video data types is very 

large space, and will exist primarily in secondary storage. When data originate from 

storage, the system has more flexibility in scheduling the times at which data are 

communicated to the application. Since data is not generated in real-time, they can 

be retrieved in bulk, well ahead of their playout deadlines. This is contrasted with 

live sources (e.g., a video camera), that generate data at the same rate as required 

for consumption. Stored-data applications in a distributed multimedia information 
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system require synchronization for data originating from independent sources and 

simple data sequencing cannot provide intermedia synchronization. 

In the following paragraphs, some of the scheduling algorithms for real-time traffic 

are discussed and their merits and demerits are analyzed. 

Fair Queueing Algorithms: 

The aim of fair queueing algorithm proposed by Nagle [17] is simple: if N channels 

share an output trunk, then each channel should get 1 /N of the bandwidth, with the 

provision that if any channel uses less than its share, the slack is equally distributed 

among the rest. Nagle's scheme is unfair because sources with longer packets could 

hog much of the available bandwidth. This can be overcome by doing a bit-by-bit 

round robin service among the channels, which gives a aBit round Fair Queueing 

algorithm [5]. In this algorithm, each gateway maintains separate queue of packets 

for each individual source. Certainly, it is impractical to send packets bit by bit. This 

scheme achieves both transmitting data packet by packet and maintaining fairness of 

round-robin. Let R(t) denote the number of rounds made in a round-robin service 

discipline upto time f; S", F" are the values of R(t) at the time the packet i starts 

and finishes the service, respectively; and P, is the length of the packet i in the 

conversation a. Therefore, F° = Sf + P". In this algorithm, whenever a packet 

finishes transmission, the next packet chosen to send is the one with the smallest 

value of F{. This algorithm creates firewalls that protect well behaved sources from 

the ill-behaved ones and gives low delay to sources using less than their fair share in 

the total bandwidth. 

Weighted Fair Queueing (WFQ) algorithm: 

Whenever there is a backlog in the queue, packets leave the queue at rates proportional 

to the clock rates. Consider the case, where all sources are sending packets at their 
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clock rates, except for one source which emits a burst of packets. The WFQ algorithm 

would continue to send packets from the uniform sources at their clock rates, so their 

packets are not queued for any significant period of time, whereas the backlog of 

packets from the bursty source will take a long time to drain. Thus, a burst by one 

source will cause a long delay in the packets of that source whereas the other uniform 

sources will continue to receive their requested service, and would have minimal effects 

on the delays seen by these sources. A burst will induce jitter directly, and mostly 

effects the source that emitted the burst. WFQ provides a degree of isolation so that 

sources are protected from other sources' bursts. 

The nature of play back real-time applications allows the scheduling algorithm to 

delay all packets upto the play-back point without adversely affecting the application's 

performance. Thus this play-back point serves as the deadline and for such problems 

the earliest-deadline-first scheduling algorithm has been proved to be optimal. 

FIFO algorithm: 

If we consider a simple example wherein a class of clients have similar service require-

ments, this implies that they are all satisfied with the same delay jitter. Thus, they 

will have the same play-back point and the same deadline [4]. If the deadline for 

each packet is a constant offset to the arrival time, the earliest-deadline-first schedul-

ing algorithm becomes FIFO; the packet that is closest to the deadline is the one 

that arrived first. In the FIFO scheme if a burst from one source arrives, this burst 

passes through the queue in a clump while subsequent packets from other sources are 

temporarily delayed. This latter delay is however much smaller than the bursting 

source would have received under WFQ. Thus, the playback point need not be moved 

out as far to accomadate the jitter induced by the burst. Furthermore, the source 

producing the burst is not singled out for increased jitter; all the sources share in all 
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the jitter induced by the bursts of all sources. The drawback of this algorithm is that 

if one source injects excessive traffic into the network, this disrupts the service for 

everyone. Hence, FIFO discipline is ineffective for providing real-time service. FIFO 

is an effective sharing scheme but not an isolation scheme. 

Delay Earliest-Due-Date: 

In this scheduling, each packet is assigned a single deadline, and the packets are sent 

in order of increasing deadlines [29]. The server negotiates a service contract with 

each source. The contract states that if the source obeys a peak and average sending 

rate, then the server will provide a delay bound. The key lies in the assignment 

of deadlines to packets. The server sets a packet's deadline to the time at which 

it should be sent, had it been received according to the contract. This is just the 

expected arrival time added to the delay bound at the server. 

Jitter Earliest-Due-Date: 

The Jitter Earliest-Due-Date [29] discipline extends Delay Earliest-Due-Date to pro-

vide delay-jitter bounds (that is, a bound on the minimum as well on the maximum 

delay). After a packet has been served at each server, it is stamped with the difference 

between its deadline and the actual finishing time. A regulator, at the entrance of the 

next switch holds the packet for this period before it is made eligible to be scheduled. 

This provides the required minimum and maximum delay guarantees. 

Stop-and-go queueing policy: 

This scheme provides loss-free communication with guaranteed throughput and it 

maintains an end-to-end delay per connection which is a constant plus a small bounded 

jitter term [9]. This strategy provides an attractive solution for the transmission of 

real-time traffic and other applications which have stringent loss and delay require-

ments. This scheme uses a multiplexing discipline which ensures that an individual 
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session's output characteristics, even after being multiplexed with other sessions at 

a switch's output port, are the same as that session's input traffic characteristics. 

The approach is based on a key observation about formation of packet bursts inside 

a network. Congestion and buffer overflow pose serious threats to the transmission 

of delay sensitive traffic in packet networks. This scheme has an admission policy 

imposed per connection at the source node, and a particular queueing mechanism at 

the switching nodes, called the stop-and-go queueing. The admission policy requires 

that packet stream of each connection to possess a certain smoothness property upon 

arrival to the network. It is based on the notion of time frames. If a traffic transmis-

sion rate for a connection k is setup as rjt, the packets arriving in one time frame is 

said to be r* * T smooth with the time frame of length T. Also, the total length of 

admissible packets arriving in one time frame is limited to rk*T, for any access link of 

this connection. In order to enforce this traffic smoothness along all the intermediate 

nodes, this policy ensures that a packet arriving in one frame at a switch is never 

transmitted over an output link during the same time frame over which it arrived. To 

satisfy this constraint a packet may have to be held (stopped) in the switch's output 

buffers while the output link is purposefully allowed to go idle. Stop-and-go queue-

ing mechanism is realizable with little processing overhead and minor modification 

to the conventional FIFO queueing structure. The advantage is specially important 

at broad-band speeds where more elaborate queueing mechanisms like round robin 

scheduling and time slot assignment may not be convenient. 

Multi-Hop Sharing: 

The jitter need not increase with the number of hops as the increase in the number 

of hops provides more opportunities for sharing and hence more opportunities for 

reducing jitter [4]. The key is to correlate the sharing experience which a packet has 
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at successive nodes in its path. This scheme is called FIFO+. In FIFO+, FIFO style 

sharing is induced across all the hops along the path to minimize jitter. For each hop, 

the average delay seen by packets in each aggregate class at that switch, is measured. 

For each packet, the difference between the particular delay and the class average is 

computed. This difference is added to a field in the header of the packet, which thus 

accumulates the total offset for this packet from the average for its class. This field 

allows each switch to compute when the packet should have arrived, if it were indeed 

given average service. The switch then schedules the packet as if it arrived at this 

average expected time; this is done by ordering the queue by these expected arrival 

times rather than the actual arrival times. 

The effect of FIFO+ as compared to FIFO, is to slightly increase the mean delay 

and jitter of flows on short paths, slightly decrease the mean delay and significantly 

decrease the jitter of flows on long paths which means that the overall delay bound 

goes down and the precision of estimation goes up on long paths. FIFO and FIFO+ 

differ in one important way: the queue management discipline is no longer trivial 

in FIFO+, but instead requires that the queue be ordered by deadline, where the 

deadline is explicitly computed by taking the actual arrival time, adjusting this by 

the offset in the packet header to find the expected arrival time, and then using this 

to order the queue. FIFO+ is also extended to multiple hops, as an explicit means to 

minimize the jitter by obtaining as much as benefit from sharing. The modification 

of FIFO+ merely extends the concept of sharing present in FIFO between flows at a 

single hop, to flows at multiple hops. 

Unified Scheduling Algori thm: 

This algorithm handles guaranteed, predicted and datagram service [4]. Consider a 

set of real-time flows, some requesting guaranteed service and also a set of datagram 
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sources. The scheduling algorithm at a switch takes care to isolate each of the guar-

anteed service flows from each other and from the predicted service flows. WFQ is 

used as a framework into which, the other scheduling algorithms can be fitted. Each 

guaranteed service client has a separate WFQ flow a, with some clock rate, r a . All 

of the predicted service and datagram service is assigned to a pseudo WFQ flow, call 

it flow 0, with, at each link, r° — fi — ErQ where the sum is over all the guaranteed 

service flows passing through that link. Inside this flow 0, there are a number of strict 

priority classes, and within each priority class, the FIFO+ algorithm is implemented. 

Once each predictive service flow has been assigned to a priority level at each switch, 

the scheduling algorithm is completely defined. 

The effect of priority is to shift the jitter of higher priority class traffic to the lower 

priority classes. Datagram service is assigned the lowest priority class. Let there be 

K other priority levels above the datagram priority level. At the service interface, 

K widely spaced target delay bounds D, for predicted service are provided. The 

priorities are used to separate the traffic for the K different classes. These bounds, 

Di are not estimates of the actual delivered delays. Rather, they are a priori upper 

bounds and the network tries, through the admission control policies, to keep the 

queueing delays at each switch for a particular class i well below these bounds D{. 

The above bounds are indicative of the limits on the adaptability of these adaptive 

applications. The a priori delay bound advertised to a predictive service flow is the 

sum of the appropriate D{ along the path. This scheme has the problem that, since 

delay is additive, asking for a particular Di at a given switch does not directly mean 

that Di is the target delay bound for the path as a whole. Rather, it is necessary to 

add up the target delays at each hop to find the target upper bound for the path. 

The true post facto bounds over a long path are expected to be significantly lower 
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than the sum of the bounds A at each hop. Since this is an adaptive service, the 

network should not attempt to characterize or control the service to great precision, 

and thus should not just use the sum of the D, 's as the advertised bound. 

If the highest priority class has a momentary need for extra bandwidth due to a 

burst by several of its sources, it steals the bandwidth from the lower classes. The 

next class thus sees as a baseline of operation the aggregate jitter of the higher class. 

This gets factored together with the aggregate burstiness of this class to produce 

the total jitter for the second class. This cascades down to the datagram traffic, 

which gets whatever bandwidth is leftover and suffers from the accumulated jitter. 

Datagram traffic should be given an average rate of at least 10% both to insure that 

it makes some progress on the average and provide a reasonable pool of bandwidth 

for the higher priority traffic to borrow from during momentary overloads. 

For the lower priority class, if the target goals for jitter are widely spaced then 

the exported jitter from the higher priority class should be an order of magnitude less 

than the intrinsic behavior of the class, and the classes should usually operate more 

or less independently. Thus, a particular class is isolated from the higher priority 

classes because their jitter will be so much smaller than that of the particular class. 

Simulation results have shown that all the guaranteed service flows received worst 

case delays [4]. The Guaranteed peak flows experienced much lower delays than the 

guaranteed average flows. Likewise, the predicted high flows experienced lower delays 

than the predicted low-flows. 

2.3. Present Synchronization Techniques 

There have been tremendous improvements in network technology resulting in higher 

speeds and greater reliability. With the emergence of new network standards such as 
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FDDI, SONET, ISDN, speeds much higher than gigabits/sec are now realizable. So 

the network model should be extended to support such high data rates and handle 

the synchronization requirements of multimedia requirements. 

The new applications are characterized by their multimedia nature and the com-

plexity of their interactions. Since the data streams belonging to these applications 

are not independent, they have to be handled in parallel. Since these often involve 

more than two partners, multicast protocols linking several entities in a network are 

required. 

MPEG, prepared by ISO/IEC JTC 1/SC 29/WGll [6], is the international stan-

dard for coding moving pictures and associated audio for multimedia applications. 

Coded audio, video and other data streams are multiplexed into an MPEG stream. 

MPEG and ISO 11172 are used interchangeably. The System coding layer present in 

MPEG, defines a multiplexed structure for combining elementary streams, including 

coded video, audio and other data streams and specifies means of representing timing 

information needed to replay synchronized sequences in real-time. Upto 32 ISO 

11172 audio and 16 ISO 11172 video streams may be multiplexed simultaneously. 

Since coded MPEG streams consists of continuous media streams i.e., video and 

audio, it is necessary to synchronize these media for real-time play back. Media 

synchronization is defined as the occurrence in which each medium is played out at 

it's fixed rate determined by the type of the medium and/or the application concerned, 

and specified temporal relationships among associated media are maintained. There 

are two aspects of continuous media synchronization. 

• Intra-media synchronization. 

• Inter-media synchronization. 
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Intra-media synchronization ensures the continuity for smooth playback of each medium 

whereas inter-media synchronization ensures synchronization between associated me-

dia. 

ISO 11172 standard specifies syntax and semantics based on conceptual decoder 

model, System Target Decoder (STD). This model assumes that multiplexed MPEG 

stream is stored on a constant latency digital storage medium and data transfer and 

decoding within decoder are instantaneous. ISO 11172 stream is designed such that 

STD will be able to decode and display elementary streams synchronously. 

ISO 11172 storage medium has broad meaning including CD-ROM, magnetic hard 

disk, digital audio tape and computer networks etc. These storage media are of 

indeterministic nature in terms of delay and transmission rate instead of constant 

latency as assumed in STD model. In order to feed ISO 11172 decoder with stream 

of constant latency and a constant delay, a medium specific decoder is required. 

2.3.1. ISO 11172 Stream 

While MPEG video and audio specify coding of each individual stream, MPEG sys-

tems specifies the syntax and semantics of information that is necessary in order 

to reproduce one or more MPEG audio or video compressed data streams in a sys-

tem. An ISSO 11172 stream consists of streams multiplexed together. An elementary 

stream consists of a number of access units (AU). The definition of the access unit de-

pends on the medium. In the case of compressed audio an access unit is defined as the 

smallest part of the encoded bit stream which can be decoded by itself. In the case of 

compressed video, an access unit is the coded representation of a picture. A decoded 

access unit or decoded picture is called a presentation unit (PU). In a coded video 

stream, there are three types of access units: I-pictures, P-pictures and B-pictures. 
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I-pictures are coded without referring to other pictures. P-pictures are coded using 

forward prediction and B-pictures are coded using both forward and backward pre-

dictions. Due to the way video stream is coded, picture order in the coded stream 

may differ from the display order. The decoder must carry out reordering if needed. 

An ISO 11172 stream is organized into two layers: 

1. Pack Layer. 

2. Packet Layer. 

The pack layer is for system operations and the packet layer is for stream specific 

operations. An ISO 11172 stream consists of one or more packs. A pack commences 

with a pack header and is followed by zero or more packets. The pack header begins 

with a 32-bit start code and is used to store system clock reference (SCR) and bit rate 

information, mux_rate. The SCR is a 33-bit number, indicating the intended time of 

arrival of the last byte of the SCR field at the input of the system target decoder. 

Mux_rate is a positive integer specifying the rate at which the system decoder receives 

the ISO 11172 multiplexed stream during the peak in which it is included. The value 

of mux_rate is measured in units of 50 bytes/second rounded upwards. The value 

encoded in mux_rate may vary from pack to pack in an ISO 11172 multiplexed stream. 

The mux_rate value together with the SCR value defines the arrival time of each byte 

at the input to the system target decoder. 

Data from elementary streams is stored in packets. A packet consists of a packet 

header followed by packet data. The packet header begins with a 32 bit start code that 

also identifies the stream to which the packet belongs. The packet header defines the 

buffer-size required at each elementary decoder for smooth decoding and playback of 

elementary stream. The packet header may also contain decoding and/or presentation 
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time/stamps (DTS and PTS) that refer to the first access unit in the packet. The 

purposes of DTS and PTS are discussed later. 

The packet data contains a variable number of contiguous bytes from the same 

elementary stream. A data packet never contains data from more than one elementary 

stream and byte ordering is preserved. Thus, after removing the packet headers, 

packet data from all streams with a common stream identifier are concatenated to 

recover a single elementary stream. The multiplex of different elementary streams is 

constructed in such a way as to ensure that specified STD buffers do not overflow or 

underflow. 

The system header is a special packet that contains no elementary stream data. 

Instead, it indicates decoding requirements for each of the elementary streams. It 

indicates a number of limits that apply to the entire ISO 11172 stream, such as 

data rate, the number of audio and video streams, and the STD buffer size limits 

for the individual elementary streams. A decoding system may use these limits to 

establish its ability to play the stream. The system header also indicates whether the 

stream is encoded for constant rate delivery to the STD. The system header must 

be the first part of the ISO 11172 stream. It may be repeated within the stream as 

often as necessary. Repeat of the system header will facilitate random access. Real-

time encoding systems must calculate suitable values in the header before starting to 

encode. Non-real-time systems may make two passes over the data to find suitable 

values. 

The MPEG systems coding specification provides data fields and semantic con-

straints on the data stream to support the necessary system functions. These include 

the synchronized presentation of decoded information, the management of buffers for 

coded data and random access. Random access is made possible by repeated ap-
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pearance of the information needed to start decoding such as SCR, PTS and system 

headers and use of I-pictures. Other functions are all related to the smooth and 

synchronous playback of coded streams . 

In STD, playback of N streams is synchronized by adjusting the playback of all 

streams to a master time base rather than by adjusting the playback of one stream 

to match that of another. The master time base may be one of the N decoders' clock, 

the DSM or the channel clock, or it may be some external clock. In this scheme, 

each presentation unit has a time stamp and presentation units with the same time 

stamps are displayed at the same time to achieve synchronization. 

MPEG Systems provide for end-to-end synchronization of complete encoding and 

decoding process. This is achieved by use of time stamps, including system clock 

reference (SCR), presentation time stamp (PTS), decoding time stamp (DTS). 

In a pro-typical encoding system, there is a single system time clock (STC) which is 

available to the audio and video encoders. Audio samples entering the audio encoder 

are encoded into audio presentation units. Some, but not necessarily all of the audio 

PUs have PTS values associated with them, which are samples of the STC at the time 

the first sample of the PU is input to the encoder. Likewise, STC values at the times 

when video pictures enter the video encoder are used to create video PTS fields. SCR 

values specify the time when the last byte of the SCR field leaves the encoder. DTSs 

specify the time the access units are decoded. The STD model assumes instantaneous 

decoding of the access units. In audio streams, and for the B-pictures in the video 

streams, the decoding time is the same as the presentation time and so only the PTSs 

are encoded; DTS values are implied. 

In a pro-typical decoding system, the ISO 11172 stream arrives according to the 

arrival schedule specified by SCR and mux_rate fields in the pack header. The first 
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SCR value is extracted and used to initialize the STC in the decoder. The correct 

timing of the STC is maintained by ensuring that STC is equal to the subsequent SCR 

values, at the time the SCRs are received. Elementary access units are decoded at 

times specified by their DTSs and PUs are presented when their PTS values are equal 

to the STC value. In this way both inter-stream and intra-stream synchronization is 

maintained. Intra-stream synchronization is maintained by ensuring the STCs at the 

encoder and decoder run at the same rate. Inter-stream synchronization is maintained 

by presenting each PU at their specified PTS relative to STC. 

All timing information is specified in terms of 90 KHz clock, which provides suffi-

cient accuracy for audio interchannel phase alignment. The time stamps are encoded 

into 33 bits which are long enough to support absolute program durations of at least 

24 hours. 

Buffer management is also an important aspect for synchronization because if 

there is data starvation or buffer overflow there will be loss of synchronization. In 

ISO 11172, it is specified that for all multiplexed streams the delay caused by the 

system target decoder input buffering is less than or equal to one second. The input 

buffering delay is less than or equal to one second. The input buffering delay is the 

difference in time between a byte entering the input buffer and when it is decoded. 

2.3.2. Synopsis of the Protocols for Multimedia Synchronization 

Two levels of synchronization and transmission service are identified to support gen-

eral purpose multimedia communications, based on the scheduling framework. These 

are for the independent-connection traffic (IC) and aggregate-connection traffic (AC) 

consisting of multiple synchronized IC traffic. For IC traffic, a service mechanism 

is defined for the support of applications requiring synchronization of sequences of 
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data of the same type or origin. This mechanism provides synchronized output for a 

set of data and their playout schedules. For AC traffic, a temporal specification of a 

multimedia object is utilized to produce playout schedules for synchronized commu-

nication of multiple classes of data. By decomposing these two levels of functionality, 

the IC protocol mechanism is isolated from inter-class dependencies and the temporal 

specification, and the AC protocol mechanism achieves an abstract interpretation of 

the objects and their origins rather than their protocol mechanism. 

The IC protocol requires as input a set of multimedia objects, their playout times, 

their aggregate start time, and the desired probability of data lateness. The protocol 

can then provide a predicted end-to-end control time T and data transport mechanism 

for the set of data elements. The protocol performs the following operations: 

1. Reservation and negotiation for channel capacity C. 

2. Identification of current channel delay parameters. 

3. Computation of retrieval schedule and required buffers based on (2). 

4. Data initiation and transfer. 

The AC protocol takes a selected object, decomposes it into elements of distinct 

traffic classes for the IC protocol, and then provides inter-class synchronization. Once 

an object is identified, the remaining steps required to retrieve and present the sought 

multimedia object are provided by the AC. These include: 

1. Traversal of an object's temporal hierarchy 

2. Decomposition of traffic classes based on type and location. 

3. Generation of playout schedules from temporal relations. 
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4. Invocation of IC protocol to determine individual control times 

5. Identification of maximum control time for intermedia synchronization. 

6. Initiation of synchronous data transfer. 

2.4. Delay Jitter Control 

2.4.1. Need for Jitter Control 

Delay jitter is the variation of delays with which packets traveling on a network 

connection will reach their destination. For good quality of reception, continuous 

media (audio, video, image) streams require that jitter be kept below a sufficiently 

small upper bound. 

Digital audio, video and image-sequence transmissions, both of the interactive 

and noninteractive kind, need a high degree of regularity in the delivery of successive 

frames to the destination. Ideally, the end-to-end connections that carry those con-

tinuous media streams should delay each element (e.g., a frame) by the same amount 

of time. This should normally be the case even when elements of the stream are not 

transmitted at a constant rate. 

An ideal constant delay network could be characterized as a zero-jitter one, where 

jitter is any variation of frame delays. A more realistic requirement for continuous 

media transmission is that jitter have a small upper bound. A jitter bound alone will 

not guarantee faithful reproduction of the input pattern at the output. To achieve 

this result, such a bound should be accompanied by a delay bound guarantee. 

The computers and networks that connect users may introduce large amounts 

of jitter due to the fluctuations of their loads. End-to-end delay bounds can be 

guaranteed by suitable design of the various components of a connection, including 
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Figure 2.1: A Path in a Store and Forward Network 

the host computers at the two ends. 

2.4.2. Jitter Control Techniques 

One of the jitter schemes proposed has time stamping of each frame by the source 

and the destination knowing the timestamp and the ideal constant delay, buffers each 

stream frame until the time it has to be delivered to the receiving user. This scheme 

can be implemented at the application layers as well as at the lower layers. 

Another scheme proposed by Verma et.al [25] is a distributed scheme - thus it 

can only be implemented at the Network layer not by the upper protocols or by the 

application. The distributed scheme requires a smaller amount of buffer space and 

yields a more uniform buffer allocation along the path of a bounded jitter connection. 

A store and forward network is assumed. A path from source to destination in 

such a network is depicted in figure 2.1. 

Nodes 2, 3, ... N - 1 represent the switches traversed by the path. Nodes 1 and 

node N implement the protocol layers below the transport layer on the host systems 

For these systems to offer end-to-end delay guarantees, they must be scheduled by 

a policy that gives higher priority to the real-time activities of the upper protocol 

layers, as well as to the output queues of the "resident network node", for real-time 

packets. 
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A real-time channel is characterized by performance guarantees that a client may 

request such as delay bound for each packet transmitted. A client has to specify 

the maximum traffic on the channel to be established and also the minimum time 

between successive packets xmin . This will automatically specify the client's maximum 

bandwidth requirements. 

Each switch on the path from a source to destination will receives the value of its 

local delay bound di>n, for a channel i, and uses it to compute the local delay of each 

packet transmitted on that channel. 

The path of a channel from the sending host to the receiving host will traverse a 

number of networks, interconnected by Gateways. A hierarchical model of the network 

is considered in which level 1 nodes are gateways. The level 1 path of the channel 

is a path consisting of gateways interconnected by logical links. In this hierarchical 

model a path through the network is abstracted by transforming into a simple logical 

link at the immediately higher level. The process of abstraction ends with a level 0 

path, which is a single logical link connecting the sender and the receiver. This is the 

logical link whose delay and jitter are to be bounded. 

The delay bound <//;,/ of a level 1 logical link / for channel i is divided into a 

fixed delay dfij and a maximum variable delay term dv^i, where dfij is the delay 

encountered by the smallest possible packet traveling on the logical link under zero 

load conditions and dv^i is the upper bound on the variable components of packet 

delays along the same link. Each level 1 node traversed by channel i has a delay bound 

di>n assigned to it by the destination at channel establishment time. This bound is 

the maximum residence time of a packet in node n. The minimum residence time is 

the packet's processing time in the node - dp^n. The maximum queuing time in a 

node is dq^n. Thus we have 
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^i,n — dPi,n "I" ̂ Qi,n 

In the level 1 path of a real-time channel, all components of the end-to-end delay 

bound are known after the establishment of the channel. Each logical link I of channel 

i has a total delay bound equal to dfo + dvij, and each node has a local delay bound 

of difU assigned to it by the destination. Thus, it is easy to calculate the maximum 

delay between a node and the next and to compensate for the jitter due to the variable 

parts of the delay, which may make the actual delay shorter than the maximum. 

The mechanism for jitter control requires timestamping each packet's header by 

the source host, reading the clock at a packet's arrival time at a level 1 node, and 

keeping the packet until the canonical (i.e., zero jitter) arrival time at that node 

before giving that packet to the node's scheduler. Each node is informed, when a 

real-time channel is created, about the maximum delay that separates it from the 

source for the packets on the channel - this is the canonical delay D*n for the channel 

i and node n. The maximum delay with respect to the canonical arrival time at the 

previous node (node n - 1) equals to c£/,y + dvij + d;>n_i. The node calculates the 

canonical arrival time by using the information present in the header of the packet 

and compares it with the actual one. The packet will be kept in storage for a time 

duration of the difference between the canonical arrival time and actual arrival time. 

When that interval expires that packet becomes "schedulablethe jitter introduced 

by the scheduler in node n will be corrected exactly by the same mechanism in node 

n + 1. The only jitter that cannot be corrected in this way is that introduced by 

the last node in the path. This will be corrected by the receiving host, which will 

know the maximum delay assigned to the last node and keep the packet until that 

bound is reached before giving it to the application. If this is done, a "zero - jitter" 

can be achieved. If it is not done, the only end-to-end jitter is that generated by 
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the last node, since those produced by all the previous nodes and links are perfectly 

compensated by this mechanism. 



CHAPTER 3 

THE PROPOSED ALGORITHM 

A scheduling algorithm which supports a separate virtual connection for each in-

formation type as well as control data is proposed. The multiple data streams are 

supported by multiple channels on an ATM network. This algorithm will also deal 

with the issues of ucontinuity" and ucoordinationin the multimedia data streams 

over the network. Practical considerations for applying the derived schedule are also 

considered. 

Some general service requirements of real-time data are as follows: 

• There is often a real-time interaction between the two ends of an application, 

as in a voice conversation. The application performance, is sensitive to the data 

delivery delay. In general, lower delay is much preferable. 

• In order to set the play-back point, the application needs to have some informa-

tion (preferably an absolute and statistical bound) about the delays that each 

packet will experience. 

• Since all data is buffered until the play-back point, the application is indifferent 

as to when data is delivered as long as it arrives before the play-back point. 

• The play-back applications can often tolerate the loss of a certain fraction of 

packets with only a minimal distortion in the signal. Therefore play back points 

need not be so delayed that absolutely every packet arrives before hand. 

27 
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3.1. The Underlying ATM 

ATM [23] is based on Asynchronous Time Division Multiplexing(ATDM). The unit 

of multiplexing is the cell, which is a small packet of a constant length (53 bytes). 

The cells carrying an identical virtual channel identifier (VCI) within their header 

(5 bytes) form a virtual channel (VC). An end-to-end path is established by the 

concatenation of VCs and a mapping between an input VCI and an output VCI is 

performed by the ATM switches. In ATM, the bandwidth available at a multiplexing 

point is not statistically shared among the VCs for a better resource utilization. This 

feature is particularly suitable for supporting bursty traffic. Instead of reserving a 

fixed capacity channel based on the peak rate, a source may request the opening of a 

virtual circuit, based on the average rate and still be allowed to transmit bursts. 

The ATM adaptation layer (AAL) enhances the services provided by the ATM 

layer and supports four service classes that have been defined by CCITT. Classes 

A to D identify the mode of service, the bit rate and the timing needs between the 

source and destination. AAL type 1 offers a class A service: connection-oriented, 

constant bit rate, timing required between the source and destination. AAL type 2 

offers a class B service: isochronous service, but with variable bit rate support. AAL 

type 3 offers a class C service: connection-oriented, variable bit rate and no t i m i n g 

requirements between the source and the destination. AAL type 4, offers a class D 

service: same as class C, but with connectionless mode. When no AAL is used, the 

service provided is the connection-oriented and non-isochronous transfer mode of the 

ATM layer. 

Some important issues nevertheless need to be addressed for providing guarantees 

on cell delay and on loss probability in ATM networks. Adequate policies limiting 

the number of connections passing through multiplexing point as well as rate control 
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policies for ensuring that a source obeys its claimed rate are needed. Efficient resource 

management schemes and service disciplines should also be used. 

3.2. Multimedia Data Streams on the ATM Network 

In the approach proposed, the multimedia data streams are separated into multiple 

streams according to the variable transmission requests of the medium they belong 

to. Data streams in different groups are "independent". Each stream is transmitted 

on a suitable connection. The speed of the communication connection required by 

data of a particular medium is determined by its source rate (sample rate and sample 

size). 

The advantages of having multiple channels for multiple data streams and having a 

synchronization channel are: 

• An increases in parallelism and hence reduces the overall transmission time. 

• Possibility of employing "lazy transmission", i.e., retrieving a part of informa-

tion on demand only. 

• No interference among data streams and structuring information. 

• Transmission of the different data over the various channels leads to a natural 

and efficient usage of resources. 

3.3. Properties of Time-Dependent Data 

For management of time-dependent data in a computer system we are confronted 

with sequences of data objects which require periodic and aperiodic computation, 

and communication that is oriented towards presentation of information to the user. 
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Figure 3.1: Temporal-interval Based Specification for Video Frames 

A temporal model to characterize the time-dependencies of the data objects is shown 

in the following paragraph. 

Temporal Model: 

A common representation for the temporal component of time-dependent data is 

based on temporal intervals [14] in what is called temporal-interval-based (TIB) mod-

eling. This technique associates a time interval to the playout duration of each time-

dependent data object. For example, the playout of a sequence of video frames can 

be represented by using temporal intervals as shown in Figure 3.1. 

A binary relationship, called a temporal relationship (TR), can be identified be-

tween pairs of intervals. A temporal relationship can indicate whether two intervals 

overlap, abut, etc. With such a TIB modeling scheme, complex timeline represen-

tations of multimedia object presentation can be represented by application of the 

temporal relations to pairs of temporal intervals. Each interval can be represented by 

its start time and end time via instant-based modeling. Therefore, for a sequence of 

data objects we can describe their time dependencies as either a sequence of related 

intervals or as a sequence of start and end times. 
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3.4. Synchronization Technique Used 

If we use independent channels for different data streams, the transmission time will 

be different on various channels. Also, the processing time, queueing delay and re-

transmission attempts in the transport layer from different network channels may be 

different. Thus, one must assume that the overall delay of information on different 

streams will be different. This means, for example, that in an application where a 

commentary (voice) accompanies the movement of a pointer (data) on a map (image) 

in order to explain a route, the voice may, after a while, no longer be in synchroniza-

tion with the point on the map. This would destroy all usefulness of the application. 

Under circumstances such as these, where the information is required to be presented 

in the same way as it is sent, synchronization mechanisms between the data streams 

are necessary [22]. 

There are two techniques used to achieve synchronization. 

The first technique consists of inserting the synchronization information within 

the data streams at the sender side. The advantages of this technique are: 

1. Only minor modifications to the protocols are required. 

2. Little overhead is necessary as it does not require any extra channel. 

The disadvantages of the above technique are: 

1. More buffering is required at the receiver. 

2. User data is modified by the transport system. 

The second technique consists of having a special connection called the synchro-

nization channel, used for purpose of transmitting synchronization commands and 
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parameters. The information carried by this channel contains the control data (com-

mands and parameters) as well as the references to the beginning and end of each 

control unit (unit references). 

The advantage of this technique is: 

• Data streams are not modified - so video equipment for e.g., may be attached 

easily. 

The possible disadvantages are: 

1. It has the drawback of requiring more bandwidth because of the extra channel. 

2. Also, more processing is required as an additional channel is used. 

In our algorithm we use the second technique of having an extra synchronization 

channel. 

3.5. Issues Involved in the Scheduling Approach 

Playout Timing with Delays 

In the presence of real system latencies, several delay parameters are introduced. To 

properly synchronize some data element x with a playout time T, sufficient time must 

be allowed to overcome the latency A caused by data generation, packet assembly, 

transmission etc., otherwise, the deadline w will be missed. If we choose a time called 

the control time Tsuch that T > A, then scheduling the retrieval at Ttime units prior 

to 7r guarantees successful playout timing. The retrieval time, or packet production 

time is defined as /? = tt — T. r represents the playout duration of the packet. 

The Figure 3.2 illustrates the timing parameters including latency in a multimedia 

information storage system. 
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Figure 3.2: Timing Parameters including Latency 

Data Arrival Timings and Nature of Delay 

To develop an approach for scheduling the playout times, we must characterize the 

properties of the multimedia objects and the communication channels. For a typical 

multimedia object, the total end-to-end delay for a packet belonging to a stream i can 

be decomposed into three components: a constant delay DPii corresponding to the 

propagation delay and other constant overheads, a constant delay Dt,i corresponding 

to the packet size, and a variable delay DVti which is a function of the end-to-end 

network traffic. Dtj is determined from the channel capacity C; of stream i as D(), = 

where Sm is the packet size for medium m. The end-to-end delay for a single 

packet in a data stream i can be described as : 

De,i = DPti + A,; + DVii 

Since multimedia data objects can be very large, they can consist of many packets. If 

(a:| describes the size of some object x in bits, then the number of packets r constituting 

x is determined by r = (J^-). The end-to-end delay for an object x is then: 

De,i — DPti -f rDt,i + 
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Delay, Capacity and Synchronization Constraints 

Assume that the playout of a object x in stream i is at the arrival of this 

packet starts at say the playout of the same object x in stream j is at 7rxj, the 

arrival of this object starts at say &xj* Assume that the retrieval time of object x 

in stream i is and that of stream j is /3xj. There are three constraints which 

determine the playout time for a set of objects. These are the minimum delay (MD) 

constraint [13] and the finite capacity (FC) constraint [13], which are used for intra-

media synchronization and the synchronization constraint (SC) constraint which is 

used for inter-media synchronization. 

• MD constraint states that the item cannot be played out before arrival. 

^ flxj + TXi{ i.e., > 0xj 

where TXti is defined as the skew between putting a packet x onto the channel 

and playing it out. 

• When multiple objects are retrieved from a channel it is possible to exceed the 

capacity of the channel and therefore we must consider the timing interaction 

of the objects. FC constraint determines the relation between the retrieval time 

and its successor when the channel is busy and accounts for the interarrival 

time due to transit time and variable delays. It also determines the minimum 

retrieval time between successive objects. 

This can be proved in the following manner, if the channel is busy then, 

Vx) > flV-iti — DPii =$> = T T x - i a n d 
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if the channel is idle then, 

$x,i ^ T^x—l,i Dp,i ^ fix—l,i = ftx,i T'x—lfi "I" ^p,i 

Any object in the set can find the channel idle or with a backlog of items. 

If it is slack, the MD constraint is optimal, by definition. Similarly, when the 

channel is busy, the FC constraint is optimal. The channel is slack when fix,i 

occurs before irx-iti, but it can also be slack when > irx-i,i ~ Dpj due to 

the pipeline delays. 

• Let S be the average time length of a synchronization unit and Lp the average 

number of bits required for the control of a single unit. Then the average bit 

rate Rc supported by the control command in this case should be Rc > 

If the maximum number of bits required for the control of one unit is Xpmasc, 

the peak bit rate will be greater than Lpmax/S. To save the communication 

bandwidth a smaller value of Lpmax and a greater value of S is desired. 

SC constraint determines the mismatching tolerance r , j between two data 

streams i and j (1 < i < N, 1 < j < N), where N is the number of data 

streams. Let <t- and tj be defined as, the average random delay between the 

playout of two adjacent packets in stream i and j respectively. Let nx+it -

irx,i ( 7TX+ij - Txj ) be the time slot of one i (j) data packet or frame. Then 

the synchronization constraint with a synchronization unit of time length S is 

constrained by 

( - — - 1) * ti - ( - — 1) * tj < Tu, V 1 < i j < N 

In order to filter the gaps, smooth the jitters and thus decrease the mismatching 

at the end of a control unit, an "intention delay" is placed at the beginning of 
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Figure 3.3: A Synchronization Session with a Synchronization Channel 

each synchronization unit. That is, in a unit, the first packet of each data stream 

will be intentionally delayed before being played out. This extra delay helps 

reconstructing the data streams. The intention delay is already applied in voice 

packet switching systems and some video application systems. Different media 

require different intention delay times for recovering the gaps and jitters [2]. 

The synchronization delay and the intention delay are carried out concurrently. 

Every data stream waits for the others while performing the intention delay for 

itself. 

The timing diagram of multiple channels with the use of the synchronization 

channel is shown in the Figure 3.3. In this figure, assume that the arrivals of packet 

numbered x+1 in synchronization, audio, video, text streams are tx+iiS, tx+lj0, tx+1)V, 

tx+i,t respectively. The audio data packet numbered x+1 is the first packet to arrive. 
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This packet is delayed until all the packets numbered x+1 from the other streams 

also arrive. So the playout time of packets numbered x+1 are greater than equal to 

tx+i,v, as the video packet is the last among all the packets to arrive. 

Synchronization control in simultaneous real-time data delivery is essentially a 

"rate matching" problem of multimedia data streams. In order to playout all the 

data streams in one unit at the same time, the streams which arrive first are delayed 

until the remaining ones are received. 

Transmission of objects is either back to back or introduces slack time, depending 

on their size and the time of playout. We define an optimal schedule for a set of 

objects in different channels. For a particular packet, say x, in different streams 

to be synchronized with all other streams' packets, the admission of packets should 

follow the following algorithm. Our admission control strategy is based on the playout 

times. Given the characteristics of the channel and of a composite multimedia object, 

a schedule can be constructed. 

3.6. The Algorithm 

The algorithm is a concurrent processing of all the N channels. Since we know the 

mismatching tolerances among different data streams, we can calculate the maximum 

value rm a x among these tolerance values and append this on to the synchronization 

packet. The algorithm begins by establishing an optimal retrieval time for the final, 

mth object in different streams, i.e., f3m = 7rm-Tm. The remainder of the schedule for 

adjacent objects, can be determined by iterative application of the minimum delay 

and finite capacity constraints, keeping in view of the synchronization constraint. 

Before, the retrieval of the next object, the previous /? value is checked to see whether 

it falls within which is the minimum among all the j3 values in different streams 



38 

for a particular numbered object, and the maximum mismatching tolerance Tmax. If it 

is not within these limits, an exception -handling routine, which takes care of dropping 

certain frames or replaying certain frames of packets is activated. 

Psuedo code of the Algorithm: 

process i = 1 : N 

begin 

@m,i = Itm,i 

for j = 0 : m -2 

begin 

compute ftmin among all the flm-j's ; 

— fimin "I" ^~max then 

continue 

else 

exception _handling(); 

endif 

if Pm-j,i ^ TTm-j'-l.i -Dp,i then 

— Pm-j,i ~ Tj-ij + Dpj 

else 

fm-j—l,i 

endif 

end 

end 

ftmin can be calculated by having a barrier synchronization at which all the values 

of the /3 values for an object numbered x, have to be calculated in different streams. 
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The resultant schedule indicates the times at which to put objects onto different 

channels, between source and destination, or it can be used to determine the worst-

case buffer requirements. 

When the packets' numbered x of different streams, arrive at the destination, 

their arrival should be within the mismatching tolerances, among them. We can also 

determine the number of buffers required when using the playout schedule j3, noting 

that it is necessary to obtain an element prior to its use. For each fetch time the 

number of buffers Kx required is equal to the size of the objects with elapsed playout 

deadlines between f3Xii and Kx-i,i-

Using this method, the buffer use profile, ftXii versus I<i, and the maximum delay 

incurred by buffering, can be determined, which can be used for allocation of storage 

resources. 

3.7. Implementation Issues 

In this section we show how the derived schedule ft can be used. First, the sender 

can determine the times at which to put the objects onto the channel. The receiver 

then buffers the incoming objects until their deadlines occur. In this case, the source 

must know /?, the destination must know 7r, and the overall control time is tti -

( the computed delay of the first element in the sequence). This scheme can be fa-

cilitated by appending 7Tj on to the objects in the synchronization channel, as they 

are transmitted in the form of time stamps. Another way to use /? is to determine 

the worst-case skew between any two objects as Tw = max({xi — /?,}), and then to 

provide Tw amount of delay for every object. Transmission scheduling can then rely 

on a fixed skew Tw and the ir schedule; that is it can transmit all items with 7r, in 

the interval {t < t + Tw). The first method can be useful in minimizing the buffer 
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utilization and delay, since the proposed schedule is derived based on these crite-

ria. Furthermore, required buffer allocation need not be constant but can follow the 

buffer use profile. The second mechanism provides unnecessary buffering for objects, 

well ahead of their deadlines, and requires constant buffer allocation. However, it 

provides a simpler mechanism for implementation. Consider a long sequence of ob-

jects which can be placed on different channels, which are of identical size and with 

regular (periodic) playout intervals. For each of this sequence, 7 T i = Tw, and 

7Tfc,i = (3k,i — Tw, where k varies from 1 to total number of packets in a channel i, and 

assume that the channel capacity is not exceeded on each channel. In this case, the 

minimum buffering is also provided by the worst-case delay. Such sequences describe 

constant bit rate (CBR) video or audio streams which are periodic, producing fixed 

size frames at regular intervals. Rather than manage many computed deadlines/s 

(e.g, 30/s for video) a transmission mechanism can simply transmit objects based on 

sequence number and Tw. 

If we consider data originating from different live sources, the destination has no 

control over packet generation times, and sufficient channel capacity must be present 

to preserve the real-time characteristic of the streams. In this case the control time 

can be determined from the size, delay, and channel capacity requirements of a repre-

sentative data object, e.g., a CBR video frame, and only provides jitter reduction at 

the receiver. For variable bit rate (VBR) objects, the source data stream is statistical 

in size and frequency of generated objects, and we apply a pessimistic method worst-

case characterization of the largest and the most frequent VBR object to determine 

the control time. {/?£,»} defines the packet production times, and playout times are 

***,« = Pk,t + T. The service can be supported by appending time stamps, in the form 
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of individual deadlines ~Kk,i on to the objects in the synchronization channel. 

In the general case, a playout schedule is aperiodic, consisting of periodic and 

aperiodic deadlines. Typically, during class decomposition these are isolated and one 

of the two scheduling schemes above can be applied. If both exist in the same playout 

schedule 7r {e.g., if classes are not decomposed), then the derived schedule can be used 

as follows: choose a new control time TE such that (tti,,- — /51i4- <TE < TW), and drop 

all deadlines fik,i from /? such that TE > Xk,i — Pk,i for all Jc. The result reflects the 

deadlines that will not be satisfied by simple buffering based on TE- By choosing 

TE to encompass a periodic data type (e.g, video stream), the burden of managing 

periodic deadlines is eliminated, yet aperiodic objects using extensive utilization, can 

be dealt with using /3K,I — TE, where (3K,I — TE> 0. 

3.8. Summary 

Multimedia applications require the ability to store, communicate, and playout time-

dependent data. In this chapter, a new scheduling algorithm to satisfy timing require-

ments in the presence of real-time system delay given a limited band width component 

such as communications channel or storage device is presented. The approach uses 

a set of monotonically increasing playout times for the multiple channels to be con-

sidered. The playout times are shown to be derivable from a temporal-interval-based 

timing specification. From the timing specification a retrieval schedule is computed 

based on the characteristics of the limited-capacity resource. 



CHAPTER 4 

DISCUSSIONS 

4.1. Current Architecture 

The current generation of telephone networks and the current generation of computer 

networks were each designed to carry specific and very different kinds of traffic: ana-

log voice and digital data. However with the digitizing of telephony in ISDN and the 

increasing use of multimedia in computer applications, this distinction is fast disap-

pearing. Merging these sorts of services into a single network creates a uIntegrated 

Services Packet Network" (ISPN), and would yield a single telecommunications in-

frastructure offering a multitude of advantages, including vast economies of scale, 

ubiquity of access, and improved statistical multiplexing [4]. The most difficult prob-

lem that blocks the path towards an ISPN is that of supporting real-time applications 

in a packet network. Real-time applications are quite different from standard data 

applications, and require service that cannot be delivered within the typical data rate 

service architecture. The salient characteristic of real-time traffic is that it requires 

a bound on the delivery of each packet. While this bound is statistical, the bound 

itself must be known a "priori". The traditional data service architecture underlying 

computer networks has no facilities for prescheduling resources or denying services 

upon overload, and thus is unable to meet the real-time requirement. 

Therefore, an enhanced architecture is needed for an ISPN. There are four key 

components for this type of architecture. The first piece of the architecture is the 

nature of the commitments made by the network when it promises to deliver a certain 

quality of data service. There are two types of commitments. 

42 
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1. guaranteed 

2. predicted 

The second part of architecture is the service interface, i.e., the set of param-

eters passed between the source and the network. For applications to know when 

their packets will arrive, the service interface must include the characterization of the 

quality of the service the network will deliver Also, it should contain the characteri-

zation of the source's traffic, thereby allowing the network to knowledgeably allocate 

resources. 

The third part of the architecture is the packet scheduling behavior of Network 

switches needed to meet these service requirements, as well as the scheduling infor-

mation that must be kept in packet headers, which we have dealt in Chapters 2 and 

3. 

The final part of the architecture is the means by which the traffic and service 

requirements are established. The ability of a network to meet its service requirements 

is related to the criteria the network uses to decide whether to accept another request 

for service. Though a specific algorithm to regulate the admission of new sources 

is not presented, a relation is shown between other parts of the architecture and a 

general approach to the admission control problem is described. 

4.2. Service Commitments 

For a network to make a service commitment to a particular client, it must know 

beforehand the characteristics of the traffic that will be offered by that client. For 

the network to reliably meet its service commitment, the client must keep its traffic 

commitment (i.e., its traffic must conform to the characterization it has passed to the 
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network). Thus, the service commitment made to a particular client is predicated 

based on the traffic commitment of that client. 

Guaranteed service is appropriate for intolerant and rigid clients since they need 

absolute assurances about the service they receive. In this case, if the network hard-

ware is functioning and the client is conforming to its traffic characterization, then 

the service commitment will be met. This level of commitment does not require that 

other clients conform to their traffic requirements. 

Guaranteed service is not necessarily required for tolerant and adaptive clients. 

Adaptive clients can adjust their playback point to reflect the delays their packets 

are receiving and in the process they are gambling that the network service in the 

near future will be similar to that delivered in the recent past. Any violation of that 

assumption in the direction of increased delays will result in a brief degradation in 

the application's performance as packets begin missing the playback point. Thus, an 

adaptive application ignores the known a priori bounds on delay and adapt to current 

delivered service. 

Predicted Service has two components. First, if the past is a guide to the future, 

then the network will meet its service characterization. This component takes into 

account recent measurements of the traffic load in estimating what kind of service 

it can deliver reliably. This is in contrast to the worst-case analysis that underlies 

the guaranteed service commitment. Second, the network attempts to deliver service 

that will allow the adaptive algorithms to minimize their play back points. The intent 

of the second commitment is that when the network schedules packets so that the 

current post facto delay bounds are small. Predicted Service has built into it very 

strong implicit assumptions about the behavior of other network clients by assuming 

that the network conditions will remain relatively unchanged, but involves very few 
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explicit assumptions about these network clients. Thus, for predicted service the 

network takes steps to deliver consistent performance to the client; it avoids the hard 

problem, which must be faced with guaranteed service of trying to compute a priori 

what the level of the delivered service will be. 

There is a third class of traffic, called the datagram service to which the network 

makes no service commitments at all, except to promise not to delay or drop packets 

unnecessarily. 

4.3. Service Interface 

There are two forms of service interface [4]. Those are 

• Service Interface to guaranteed traffic 

• Service Interface to predicted traffic 

Service Interface to guaranteed traffic: In this interface, the source only needs to 

specify the needed clock rate r®, then the network guarantees the rate. The source 

uses its known value of ba(ra) to compute its worst case queueing delay, where ba is 

the token bucket size. If the delay is unsuitable, it must request a higher clock rate 

ra. 

Service Interface to predicted traffic: This service interface must characterize both 

the traffic and the service. For the characterization of the traffic, we have the source 

declare the parameters (r, b) of the token bucket traffic filter to which it claims traffic 

will conform. Separately, the source should also specify the needed service by selecting 

a suitable delay D and a target loss rate L the application can tolerate. The network 

will use these numbers to assign the source to an aggregate class at each switch for 
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sharing purposes. Thus, for predicted service the parameters of the service interface 

are the filter rate and size (r, 6) and the delay and loss characteristics (D, L). 

To provide predicted service, the network must also enforce the traffic commit-

ments made by the clients. Enforcement is carried out as follows. Each predicted 

service flow is checked at the edge of the network for conformance to its declared rate 

and burstiness; nonconforming packets are dropped or tagged. This conformance 

check provides the necessary isolation that is mandatory for entering a shared world. 

After the initial check, conformance is never enforced at later switches; this is because 

any later violation would be due to the scheduling policies and load dynamics of the 

network and not the generation behavior of the source. 

In the case of predicted service, specifying the token bucket traffic filter also 

permits the network to estimate if it can carry the new source at the requested rate 

and burstiness and still meet the service targets for this, and all the existing flows. 

This is the function of the admission control computation. 

4.4. Scheduling Behavior of Switches 

The scheduling algorithms can be classified into 

• Scheduling algorithms for predicted service 

• Scheduling algorithms for guaranteed service 

These algorithms are discussed in detail in chapter 2. 

4.5. Admission Control 

There are two criteria to apply when deciding whether or not to admit additional flows 

into the network [4]. The first admission control criterion is that we should reserve 
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no more than 90% of the traffic for real-time traffic, thereby letting the datagram 

traffic have access to at least 10% of the link; while the numerical value, 10%, of this 

quota is completely ad hoc and experience may suggest that other values may be more 

effective. This quota ensures that datagram service remains operational at all times; 

having the datagram traffic completely shut out for arbitrarily long periods of time 

will likely put impossible demands on the datagram transport layers. In addition, the 

datagram quota ensures that there is enough spare capacity to accomadate sizable 

fluctuations in the guaranteed and predicted service traffic. The second admission 

control criterion is that we want to ensure that the addition of a flow does not increase 

any of the predicted delays over the bounds D;. 

4.6. Summary 

In this chapter, an architecture for a general scheduling algorithm is discussed. The 

architecture described, provides a framework for comparing various scheduling algo-

rithms. 
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