1 research outputs found

    Non–existence of some 4–dimensional Griesmer codes over finite fields

    Get PDF
    We prove the non--existence of [gq(4,d),4,d]q[g_q(4,d),4,d]_q codes for d=2q3βˆ’rq2βˆ’2q+1d=2q^3-rq^2-2q+1 for 3≀r≀(q+1)/23 \le r \le (q+1)/2, qβ‰₯5q \ge 5; d=2q3βˆ’3q2βˆ’3q+1d=2q^3-3q^2-3q+1 for qβ‰₯9q \ge 9; d=2q3βˆ’4q2βˆ’3q+1d=2q^3-4q^2-3q+1 for qβ‰₯9q \ge 9; and d=q3βˆ’q2βˆ’rqβˆ’2d=q^3-q^2-rq-2 with r=4,5r=4, 5 or 66 for qβ‰₯9q \ge 9, where gq(4,d)=βˆ‘i=03⌈d/qiβŒ‰g_q(4,d)=\sum_{i=0}^{3} \left\lceil d/q^i \right\rceil. This yields that nq(4,d)=gq(4,d)+1n_q(4,d) = g_q(4,d)+1 for 2q3βˆ’3q2βˆ’3q+1≀d≀2q3βˆ’3q22q^3-3q^2-3q+1 \le d \le 2q^3-3q^2, 2q3βˆ’5q2βˆ’2q+1≀d≀2q3βˆ’5q22q^3-5q^2-2q+1 \le d \le 2q^3-5q^2 and q3βˆ’q2βˆ’rqβˆ’2≀d≀q3βˆ’q2βˆ’rqq^3-q^2-rq-2 \le d \le q^3-q^2-rq with 4≀r≀64 \le r \le 6 for qβ‰₯9q \ge 9 and that nq(4,d)β‰₯gq(4,d)+1n_q(4,d) \ge g_q(4,d)+1 for 2q3βˆ’rq2βˆ’2q+1≀d≀2q3βˆ’rq2βˆ’q2q^3-rq^2-2q+1 \le d \le 2q^3-rq^2-q for 3≀r≀(q+1)/23 \le r \le (q+1)/2, qβ‰₯5q \ge 5 and 2q3βˆ’4q2βˆ’3q+1≀d≀2q3βˆ’4q2βˆ’2q2q^3-4q^2-3q+1 \le d \le 2q^3-4q^2-2q for qβ‰₯9q \ge 9, where nq(4,d)n_q(4,d) denotes the minimum length nn for which an [n,4,d]q[n,4,d]_q code exists
    corecore