Non–existence of some 4–dimensional Griesmer codes over finite fields

Abstract

We prove the non--existence of [gq(4,d),4,d]q[g_q(4,d),4,d]_q codes for d=2q3rq22q+1d=2q^3-rq^2-2q+1 for 3r(q+1)/23 \le r \le (q+1)/2, q5q \ge 5; d=2q33q23q+1d=2q^3-3q^2-3q+1 for q9q \ge 9; d=2q34q23q+1d=2q^3-4q^2-3q+1 for q9q \ge 9; and d=q3q2rq2d=q^3-q^2-rq-2 with r=4,5r=4, 5 or 66 for q9q \ge 9, where gq(4,d)=i=03d/qig_q(4,d)=\sum_{i=0}^{3} \left\lceil d/q^i \right\rceil. This yields that nq(4,d)=gq(4,d)+1n_q(4,d) = g_q(4,d)+1 for 2q33q23q+1d2q33q22q^3-3q^2-3q+1 \le d \le 2q^3-3q^2, 2q35q22q+1d2q35q22q^3-5q^2-2q+1 \le d \le 2q^3-5q^2 and q3q2rq2dq3q2rqq^3-q^2-rq-2 \le d \le q^3-q^2-rq with 4r64 \le r \le 6 for q9q \ge 9 and that nq(4,d)gq(4,d)+1n_q(4,d) \ge g_q(4,d)+1 for 2q3rq22q+1d2q3rq2q2q^3-rq^2-2q+1 \le d \le 2q^3-rq^2-q for 3r(q+1)/23 \le r \le (q+1)/2, q5q \ge 5 and 2q34q23q+1d2q34q22q2q^3-4q^2-3q+1 \le d \le 2q^3-4q^2-2q for q9q \ge 9, where nq(4,d)n_q(4,d) denotes the minimum length nn for which an [n,4,d]q[n,4,d]_q code exists

    Similar works