3 research outputs found

    Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters

    Full text link
    The Minimum Eccentricity Shortest Path Problem consists in finding a shortest path with minimum eccentricity in a given undirected graph. The problem is known to be NP-complete and W[2]-hard with respect to the desired eccentricity. We present fpt algorithms for the problem parameterized by the modular width, distance to cluster graph, the combination of distance to disjoint paths with the desired eccentricity, and maximum leaf number

    On computing tree and path decompositions with metric constraints on the bags

    Get PDF
    We here investigate on the complexity of computing the \emph{tree-length} and the \emph{tree-breadth} of any graph GG, that are respectively the best possible upper-bounds on the diameter and the radius of the bags in a tree decomposition of GG. \emph{Path-length} and \emph{path-breadth} are similarly defined and studied for path decompositions. So far, it was already known that tree-length is NP-hard to compute. We here prove it is also the case for tree-breadth, path-length and path-breadth. Furthermore, we provide a more detailed analysis on the complexity of computing the tree-breadth. In particular, we show that graphs with tree-breadth one are in some sense the hardest instances for the problem of computing the tree-breadth. We give new properties of graphs with tree-breadth one. Then we use these properties in order to recognize in polynomial-time all graphs with tree-breadth one that are planar or bipartite graphs. On the way, we relate tree-breadth with the notion of \emph{kk-good} tree decompositions (for k=1k=1), that have been introduced in former work for routing. As a byproduct of the above relation, we prove that deciding on the existence of a kk-good tree decomposition is NP-complete (even if k=1k=1). All this answers open questions from the literature.Comment: 50 pages, 39 figure
    corecore