65 research outputs found

    Transformations Between Different Types of Unranked Bottom-Up Tree Automata

    Full text link
    We consider the representational state complexity of unranked tree automata. The bottom-up computation of an unranked tree automaton may be either deterministic or nondeterministic, and further variants arise depending on whether the horizontal string languages defining the transitions are represented by a DFA or an NFA. Also, we consider for unranked tree automata the alternative syntactic definition of determinism introduced by Cristau et al. (FCT'05, Lect. Notes Comput. Sci. 3623, pp. 68-79). We establish upper and lower bounds for the state complexity of conversions between different types of unranked tree automata.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Minimizing Tree Automata for Unranked Trees

    Get PDF
    International audienceAutomata for unranked trees form a foundation for XML schemas, querying and pattern languages. We study the problem of efficiently minimizing such automata. We start with the unranked tree automata (UTAs) that are standard in database theory, assuming bottom-up determinism and that horizontal recursion is represented by deterministic finite automata. We show that minimal UTAs in that class are not unique and that minimization is NP-hard. We then study more recent automata classes that do allow for polynomial time minimization. Among those, we show that bottom-up deterministic stepwise tree automata yield the most succinct representations

    Operational State Complexity of Deterministic Unranked Tree Automata

    Full text link
    We consider the state complexity of basic operations on tree languages recognized by deterministic unranked tree automata. For the operations of union and intersection the upper and lower bounds of both weakly and strongly deterministic tree automata are obtained. For tree concatenation we establish a tight upper bound that is of a different order than the known state complexity of concatenation of regular string languages. We show that (n+1) ( (m+1)2^n-2^(n-1) )-1 vertical states are sufficient, and necessary in the worst case, to recognize the concatenation of tree languages recognized by (strongly or weakly) deterministic automata with, respectively, m and n vertical states.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    05061 Abstracts Collection -- Foundations of Semistructured Data

    Get PDF
    From 06.02.05 to 11.02.05, the Dagstuhl Seminar 05061 ``Foundations of Semistructured Data\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Efficient Inclusion Checking for Deterministic Tree Automata and DTDs

    Get PDF
    International audienceWe present a new algorithm for testing language inclusion L(A) ⊆ L(B)L(A) between tree automata in time O(|A| |B|) where B is deterministic. We extend this algorithm for testing inclusion between automata for unranked trees A and deterministic DTDs D in time O(|A| |Σ| |D|). No previous algorithms with these complexities exist. A journal extension is available at http://hal.inria.fr/inria-00366082

    Containment of Pattern-Based Queries over Data Trees

    Get PDF
    International audienceWe study static analysis, in particular the containment problem, for analogs of conjunctive queries over XML documents. The problem has been studied for queries based on arbitrary patterns, not necessarily following the tree structure of documents. However, many applications force the syntactic shape of queries to be tree-like, as they are based on proper tree patterns. This renders previous results, crucially based on having non-tree-like features, inapplicable. Thus, we investigate static analysis of queries based on proper tree patterns. We go beyond simple navigational conjunctive queries in two ways: we look at unions and Boolean combinations of such queries as well and, crucially, all our queries handle data stored in documents, i.e., we deal with containment over data trees. We start by giving a general \Pi^p_2 upper bound on the containment of conjunctive queries and Boolean combinations for patterns that involve all types of navigation through documents. We then show matching hardness for conjunctive queries with all navigation, or their Boolean combinations with the simplest form of navigation. After that we look at cases when containment can be witnessed by homomorphisms of analogs of tableaux. These include conjunctive queries and their unions over child and next-sibling axes; however, we show that not all cases of containment can be witnessed by homomorphisms. We look at extending tree patterns used in queries in three possible ways: with wildcard, with schema information, and with data value comparisons. The first one is relatively harmless, the second one tends to increase complexity by an exponential, and the last one quickly leads to undecidability

    Deterministic Automata for Unordered Trees

    Get PDF
    Automata for unordered unranked trees are relevant for defining schemas and queries for data trees in Json or Xml format. While the existing notions are well-investigated concerning expressiveness, they all lack a proper notion of determinism, which makes it difficult to distinguish subclasses of automata for which problems such as inclusion, equivalence, and minimization can be solved efficiently. In this paper, we propose and investigate different notions of "horizontal determinism", starting from automata for unranked trees in which the horizontal evaluation is performed by finite state automata. We show that a restriction to confluent horizontal evaluation leads to polynomial-time emptiness and universality, but still suffers from coNP-completeness of the emptiness of binary intersections. Finally, efficient algorithms can be obtained by imposing an order of horizontal evaluation globally for all automata in the class. Depending on the choice of the order, we obtain different classes of automata, each of which has the same expressiveness as CMso.Comment: In Proceedings GandALF 2014, arXiv:1408.556

    Completing Queries: Rewriting of IncompleteWeb Queries under Schema Constraints

    Get PDF
    Reactive Web systems, Web services, and Web-based publish/ subscribe systems communicate events as XML messages, and in many cases require composite event detection: it is not sufficient to react to single event messages, but events have to be considered in relation to other events that are received over time. Emphasizing language design and formal semantics, we describe the rule-based query language XChangeEQ for detecting composite events. XChangeEQ is designed to completely cover and integrate the four complementary querying dimensions: event data, event composition, temporal relationships, and event accumulation. Semantics are provided as model and fixpoint theories; while this is an established approach for rule languages, it has not been applied for event queries before

    Efficient Inclusion Checking for Deterministic Tree Automata and XML Schemas

    Get PDF
    Special issue of LATA'08.International audienceWe present algorithms for testing language inclusion L(A) ⊆ L(B) between tree automata in time O(|A| |B|) where B is deterministic (bottom-up or top-down). We extend our algorithms for testing inclusion of automata for unranked trees A in deterministic DTDs or deterministic EDTDs with restrained competition D in time O(|A| |Σ| |D|). Previous algorithms were less efficient or less general

    A Grammatical Inference Approach to Language-Based Anomaly Detection in XML

    Full text link
    False-positives are a problem in anomaly-based intrusion detection systems. To counter this issue, we discuss anomaly detection for the eXtensible Markup Language (XML) in a language-theoretic view. We argue that many XML-based attacks target the syntactic level, i.e. the tree structure or element content, and syntax validation of XML documents reduces the attack surface. XML offers so-called schemas for validation, but in real world, schemas are often unavailable, ignored or too general. In this work-in-progress paper we describe a grammatical inference approach to learn an automaton from example XML documents for detecting documents with anomalous syntax. We discuss properties and expressiveness of XML to understand limits of learnability. Our contributions are an XML Schema compatible lexical datatype system to abstract content in XML and an algorithm to learn visibly pushdown automata (VPA) directly from a set of examples. The proposed algorithm does not require the tree representation of XML, so it can process large documents or streams. The resulting deterministic VPA then allows stream validation of documents to recognize deviations in the underlying tree structure or datatypes.Comment: Paper accepted at First Int. Workshop on Emerging Cyberthreats and Countermeasures ECTCM 201
    corecore