3,429 research outputs found

    On the size of planarly connected crossing graphs

    Get PDF
    We prove that if an nn-vertex graph GG can be drawn in the plane such that each pair of crossing edges is independent and there is a crossing-free edge that connects their endpoints, then GG has O(n)O(n) edges. Graphs that admit such drawings are related to quasi-planar graphs and to maximal 11-planar and fan-planar graphs.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Density theorems for intersection graphs of t-monotone curves

    Full text link
    A curve \gamma in the plane is t-monotone if its interior has at most t-1 vertical tangent points. A family of t-monotone curves F is \emph{simple} if any two members intersect at most once. It is shown that if F is a simple family of n t-monotone curves with at least \epsilon n^2 intersecting pairs (disjoint pairs), then there exists two subfamilies F_1,F_2 \subset F of size \delta n each, such that every curve in F_1 intersects (is disjoint to) every curve in F_2, where \delta depends only on \epsilon. We apply these results to find pairwise disjoint edges in simple topological graphs

    Applications of a new separator theorem for string graphs

    Get PDF
    An intersection graph of curves in the plane is called a string graph. Matousek almost completely settled a conjecture of the authors by showing that every string graph of m edges admits a vertex separator of size O(\sqrt{m}\log m). In the present note, this bound is combined with a result of the authors, according to which every dense string graph contains a large complete balanced bipartite graph. Three applications are given concerning string graphs G with n vertices: (i) if K_t is not a subgraph of G for some t, then the chromatic number of G is at most (\log n)^{O(\log t)}; (ii) if K_{t,t} is not a subgraph of G, then G has at most t(\log t)^{O(1)}n edges,; and (iii) a lopsided Ramsey-type result, which shows that the Erdos-Hajnal conjecture almost holds for string graphs.Comment: 7 page

    On Directed Feedback Vertex Set parameterized by treewidth

    Get PDF
    We study the Directed Feedback Vertex Set problem parameterized by the treewidth of the input graph. We prove that unless the Exponential Time Hypothesis fails, the problem cannot be solved in time 2o(tlogt)nO(1)2^{o(t\log t)}\cdot n^{\mathcal{O}(1)} on general directed graphs, where tt is the treewidth of the underlying undirected graph. This is matched by a dynamic programming algorithm with running time 2O(tlogt)nO(1)2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}. On the other hand, we show that if the input digraph is planar, then the running time can be improved to 2O(t)nO(1)2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}.Comment: 20

    Dynamic Programming for Graphs on Surfaces

    Get PDF
    We provide a framework for the design and analysis of dynamic programming algorithms for surface-embedded graphs on n vertices and branchwidth at most k. Our technique applies to general families of problems where standard dynamic programming runs in 2^{O(k log k)} n steps. Our approach combines tools from topological graph theory and analytic combinatorics. In particular, we introduce a new type of branch decomposition called "surface cut decomposition", generalizing sphere cut decompositions of planar graphs introduced by Seymour and Thomas, which has nice combinatorial properties. Namely, the number of partial solutions that can be arranged on a surface cut decomposition can be upper-bounded by the number of non-crossing partitions on surfaces with boundary. It follows that partial solutions can be represented by a single-exponential (in the branchwidth k) number of configurations. This proves that, when applied on surface cut decompositions, dynamic programming runs in 2^{O(k)} n steps. That way, we considerably extend the class of problems that can be solved in running times with a single-exponential dependence on branchwidth and unify/improve most previous results in this direction.Comment: 28 pages, 3 figure

    Packing Topological Minors Half-Integrally

    Full text link
    The packing problem and the covering problem are two of the most general questions in graph theory. The Erd\H{o}s-P\'{o}sa property characterizes the cases when the optimal solutions of these two problems are bounded by functions of each other. Robertson and Seymour proved that when packing and covering HH-minors for any fixed graph HH, the planarity of HH is equivalent with the Erd\H{o}s-P\'{o}sa property. Thomas conjectured that the planarity is no longer required if the solution of the packing problem is allowed to be half-integral. In this paper, we prove that this half-integral version of Erd\H{o}s-P\'{o}sa property holds with respect to the topological minor containment, which easily implies Thomas' conjecture. Indeed, we prove an even stronger statement in which those subdivisions are rooted at any choice of prescribed subsets of vertices. Precisely, we prove that for every graph HH, there exists a function ff such that for every graph GG, every sequence (Rv:vV(H))(R_v: v \in V(H)) of subsets of V(G)V(G) and every integer kk, either there exist kk subgraphs G1,G2,...,GkG_1,G_2,...,G_k of GG such that every vertex of GG belongs to at most two of G1,...,GkG_1,...,G_k and each GiG_i is isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each vV(H)v \in V(H), or there exists a set ZV(G)Z \subseteq V(G) with size at most f(k)f(k) intersecting all subgraphs of GG isomorphic to a subdivision of HH whose branch vertex corresponding to vv belongs to RvR_v for each vV(H)v \in V(H). Applications of this theorem include generalizations of algorithmic meta-theorems and structure theorems for HH-topological minor free (or HH-minor free) graphs to graphs that do not half-integrally pack many HH-topological minors (or HH-minors)
    corecore