543 research outputs found

    The combinatorics of resource sharing

    Full text link
    We discuss general models of resource-sharing computations, with emphasis on the combinatorial structures and concepts that underlie the various deadlock models that have been proposed, the design of algorithms and deadlock-handling policies, and concurrency issues. These structures are mostly graph-theoretic in nature, or partially ordered sets for the establishment of priorities among processes and acquisition orders on resources. We also discuss graph-coloring concepts as they relate to resource sharing.Comment: R. Correa et alii (eds.), Models for Parallel and Distributed Computation, pp. 27-52. Kluwer Academic Publishers, Dordrecht, The Netherlands, 200

    The no-wait job shop with regular objective: a method based on optimal job insertion

    Get PDF
    The no-wait job shop problem (NWJS-R) considered here is a version of the job shop scheduling problem where, for any two operations of a job, a fixed time lag between their starting times is prescribed. Also, sequence-dependent set-up times between consecutive operations on a machine can be present. The problem consists in finding a schedule that minimizes a general regular objective function. We study the so-called optimal job insertion problem in the NWJS-R and prove that this problem is solvable in polynomial time by a very efficient algorithm, generalizing a result we obtained in the case of a makespan objective. We then propose a large neighborhood local search method for the NWJS-R based on the optimal job insertion algorithm and present extensive numerical results that compare favorably with current benchmarks when available

    Cable Tree Wiring -- Benchmarking Solvers on a Real-World Scheduling Problem with a Variety of Precedence Constraints

    Get PDF
    Cable trees are used in industrial products to transmit energy and information between different product parts. To this date, they are mostly assembled by humans and only few automated manufacturing solutions exist using complex robotic machines. For these machines, the wiring plan has to be translated into a wiring sequence of cable plugging operations to be followed by the machine. In this paper, we study and formalize the problem of deriving the optimal wiring sequence for a given layout of a cable tree. We summarize our investigations to model this cable tree wiring Problem (CTW) as a traveling salesman problem with atomic, soft atomic, and disjunctive precedence constraints as well as tour-dependent edge costs such that it can be solved by state-of-the-art constraint programming (CP), Optimization Modulo Theories (OMT), and mixed-integer programming (MIP) solvers. It is further shown, how the CTW problem can be viewed as a soft version of the coupled tasks scheduling problem. We discuss various modeling variants for the problem, prove its NP-hardness, and empirically compare CP, OMT, and MIP solvers on a benchmark set of 278 instances. The complete benchmark set with all models and instance data is available on github and is accepted for inclusion in the MiniZinc challenge 2020

    Algorithmic support for automated planning boards

    Get PDF
    corecore