13,438 research outputs found

    On the limiting distribution of the metric dimension for random forests

    Get PDF
    The metric dimension of a graph G is the minimum size of a subset S of vertices of G such that all other vertices are uniquely determined by their distances to the vertices in S. In this paper we investigate the metric dimension for two different models of random forests, in each case obtaining normal limit distributions for this parameter.Comment: 22 pages, 5 figure

    Global and Local Two-Sample Tests via Regression

    Full text link
    Two-sample testing is a fundamental problem in statistics. Despite its long history, there has been renewed interest in this problem with the advent of high-dimensional and complex data. Specifically, in the machine learning literature, there have been recent methodological developments such as classification accuracy tests. The goal of this work is to present a regression approach to comparing multivariate distributions of complex data. Depending on the chosen regression model, our framework can efficiently handle different types of variables and various structures in the data, with competitive power under many practical scenarios. Whereas previous work has been largely limited to global tests which conceal much of the local information, our approach naturally leads to a local two-sample testing framework in which we identify local differences between multivariate distributions with statistical confidence. We demonstrate the efficacy of our approach both theoretically and empirically, under some well-known parametric and nonparametric regression methods. Our proposed methods are applied to simulated data as well as a challenging astronomy data set to assess their practical usefulness

    Genealogy of catalytic branching models

    Full text link
    We consider catalytic branching populations. They consist of a catalyst population evolving according to a critical binary branching process in continuous time with a constant branching rate and a reactant population with a branching rate proportional to the number of catalyst individuals alive. The reactant forms a process in random medium. We describe asymptotically the genealogy of catalytic branching populations coded as the induced forest of R\mathbb{R}-trees using the many individuals--rapid branching continuum limit. The limiting continuum genealogical forests are then studied in detail from both the quenched and annealed points of view. The result is obtained by constructing a contour process and analyzing the appropriately rescaled version and its limit. The genealogy of the limiting forest is described by a point process. We compare geometric properties and statistics of the reactant limit forest with those of the "classical" forest.Comment: Published in at http://dx.doi.org/10.1214/08-AAP574 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Scaling Limits for Random Quadrangulations of Positive Genus

    Full text link
    We discuss scaling limits of large bipartite quadrangulations of positive genus. For a given gg, we consider, for every n≄1n \ge 1, a random quadrangulation \q_n uniformly distributed over the set of all rooted bipartite quadrangulations of genus gg with nn faces. We view it as a metric space by endowing its set of vertices with the graph distance. We show that, as nn tends to infinity, this metric space, with distances rescaled by the factor n−1/4n^{-1/4}, converges in distribution, at least along some subsequence, toward a limiting random metric space. This convergence holds in the sense of the Gromov-Hausdorff topology on compact metric spaces. We show that, regardless of the choice of the subsequence, the Hausdorff dimension of the limiting space is almost surely equal to 4. Our main tool is a bijection introduced by Chapuy, Marcus, and Schaeffer between the quadrangulations we consider and objects they call well-labeled gg-trees. An important part of our study consists in determining the scaling limits of the latter

    Scaling Limits for Minimal and Random Spanning Trees in Two Dimensions

    Full text link
    A general formulation is presented for continuum scaling limits of stochastic spanning trees. A spanning tree is expressed in this limit through a consistent collection of subtrees, which includes a tree for every finite set of endpoints in Rd\R^d. Tightness of the distribution, as ή→0\delta \to 0, is established for the following two-dimensional examples: the uniformly random spanning tree on ήZ2\delta \Z^2, the minimal spanning tree on ήZ2\delta \Z^2 (with random edge lengths), and the Euclidean minimal spanning tree on a Poisson process of points in R2\R^2 with density ή−2\delta^{-2}. In each case, sample trees are proven to have the following properties, with probability one with respect to any of the limiting measures: i) there is a single route to infinity (as was known for ή>0\delta > 0), ii) the tree branches are given by curves which are regular in the sense of H\"older continuity, iii) the branches are also rough, in the sense that their Hausdorff dimension exceeds one, iv) there is a random dense subset of R2\R^2, of dimension strictly between one and two, on the complement of which (and only there) the spanning subtrees are unique with continuous dependence on the endpoints, v) branching occurs at countably many points in R2\R^2, and vi) the branching numbers are uniformly bounded. The results include tightness for the loop erased random walk (LERW) in two dimensions. The proofs proceed through the derivation of scale-invariant power bounds on the probabilities of repeated crossings of annuli.Comment: Revised; 54 pages, 6 figures (LaTex

    The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane

    Get PDF
    We prove that the Minimal Spanning Tree and the Invasion Percolation Tree on a version of the triangular lattice in the complex plane have unique scaling limits, which are invariant under rotations, scalings, and, in the case of the MST, also under translations. However, they are not expected to be conformally invariant. We also prove some geometric properties of the limiting MST. The topology of convergence is the space of spanning trees introduced by Aizenman, Burchard, Newman & Wilson (1999), and the proof relies on the existence and conformal covariance of the scaling limit of the near-critical percolation ensemble, established in our earlier works.Comment: 56 pages, 21 figures. A thoroughly revised versio

    Localized Regression

    Get PDF
    The main problem with localized discriminant techniques is the curse of dimensionality, which seems to restrict their use to the case of few variables. This restriction does not hold if localization is combined with a reduction of dimension. In particular it is shown that localization yields powerful classifiers even in higher dimensions if localization is combined with locally adaptive selection of predictors. A robust localized logistic regression (LLR) method is developed for which all tuning parameters are chosen dataÂĄadaptively. In an extended simulation study we evaluate the potential of the proposed procedure for various types of data and compare it to other classification procedures. In addition we demonstrate that automatic choice of localization, predictor selection and penalty parameters based on cross validation is working well. Finally the method is applied to real data sets and its real world performance is compared to alternative procedures

    Compact Brownian surfaces I. Brownian disks

    Get PDF
    We show that, under certain natural assumptions, large random plane bipartite maps with a boundary converge after rescaling to a one-parameter family (BDL\mathrm{BD}_L, 0<L<∞0 < L < \infty) of random metric spaces homeomorphic to the closed unit disk of R2\mathbb{R}^2, the space BDL\mathrm{BD}_L being called the Brownian disk of perimeter LL and unit area. These results can be seen as an extension of the convergence of uniform plane quadrangulations to the Brownian map, which intuitively corresponds to the limit case where L=0L = 0. Similar results are obtained for maps following a Boltzmann distribution, in which the perimeter is fixed but the area is random
    • 

    corecore