169,285 research outputs found

    Degree Sequence Index Strategy

    Full text link
    We introduce a procedure, called the Degree Sequence Index Strategy (DSI), by which to bound graph invariants by certain indices in the ordered degree sequence. As an illustration of the DSI strategy, we show how it can be used to give new upper and lower bounds on the kk-independence and the kk-domination numbers. These include, among other things, a double generalization of the annihilation number, a recently introduced upper bound on the independence number. Next, we use the DSI strategy in conjunction with planarity, to generalize some results of Caro and Roddity about independence number in planar graphs. Lastly, for claw-free and K1,rK_{1,r}-free graphs, we use DSI to generalize some results of Faudree, Gould, Jacobson, Lesniak and Lindquester

    Independence Number and Disjoint Theta Graphs

    Get PDF
    The goal of this paper is to find vertex disjoint even cycles in graphs. For this purpose, define a θ-graph to be a pair of vertices u,v with three internally disjoint paths joining u to v. Given an independence number α and a fixed integer k, the results contained in this paper provide sharp bounds on the order f(k,α) of a graph with independence number α(G)≤α which contains no k disjoint θ-graphs. Since every θ-graph contains an even cycle, these results provide k disjoint even cycles in graphs of order at least f(k,α)+1. We also discuss the relationship between this problem and a generalized ramsey problem involving sets of graphs

    Towards on-line Ohba's conjecture

    Full text link
    The on-line choice number of a graph is a variation of the choice number defined through a two person game. It is at least as large as the choice number for all graphs and is strictly larger for some graphs. In particular, there are graphs GG with ∣V(G)∣=2χ(G)+1|V(G)| = 2 \chi(G)+1 whose on-line choice numbers are larger than their chromatic numbers, in contrast to a recently confirmed conjecture of Ohba that every graph GG with ∣V(G)∣≤2χ(G)+1|V(G)| \le 2 \chi(G)+1 has its choice number equal its chromatic number. Nevertheless, an on-line version of Ohba conjecture was proposed in [P. Huang, T. Wong and X. Zhu, Application of polynomial method to on-line colouring of graphs, European J. Combin., 2011]: Every graph GG with ∣V(G)∣≤2χ(G)|V(G)| \le 2 \chi(G) has its on-line choice number equal its chromatic number. This paper confirms the on-line version of Ohba conjecture for graphs GG with independence number at most 3. We also study list colouring of complete multipartite graphs K3⋆kK_{3\star k} with all parts of size 3. We prove that the on-line choice number of K3⋆kK_{3 \star k} is at most 3/2k3/2k, and present an alternate proof of Kierstead's result that its choice number is ⌈(4k−1)/3⌉\lceil (4k-1)/3 \rceil. For general graphs GG, we prove that if ∣V(G)∣≤χ(G)+χ(G)|V(G)| \le \chi(G)+\sqrt{\chi(G)} then its on-line choice number equals chromatic number.Comment: new abstract and introductio

    The Lovasz number of random graphs

    Full text link
    We study the Lovasz number theta along with two further SDP relaxations theta1, theta1/2 of the independence number and the corresponding relaxations of the chromatic number on random graphs G(n,p). We prove that these relaxations are concentrated about their means Moreover, extending a result of Juhasz, we compute the asymptotic value of the relaxations for essentially the entire range of edge probabilities p. As an application, we give an improved algorithm for approximating the independence number in polynomial expected time, thereby extending a result of Krivelevich and Vu. We also improve on the analysis of an algorithm of Krivelevich for deciding whether G(n,p) is k-colorable
    • …
    corecore