4,457 research outputs found

    Embedding Schemes for Interconnection Networks.

    Get PDF
    Graph embeddings play an important role in interconnection network and VLSI design. Designing efficient embedding strategies for simulating one network by another and determining the number of layers required to build a VLSI chip are just two of the many areas in which graph embeddings are used. In the area of network simulation we develop efficient, small dilation embeddings of a butterfly network into a different size and/or type of butterfly network. The genus of a graph gives an indication of how many layers are required to build a circuit. We have determined the exact genus for the permutation network called the star graph, and have given a lower bound for the genus of the permutation network called the pancake graph. The star graph has been proposed as an alternative to the binary hypercube and, therefore, we compare the genus of the star graph with that of the binary hypercube. Another type of embedding that is helpful in determining the number of layers is a book embedding. We develop upper and lower bounds on the pagenumber of a book embedding of the k-ary hypercube along with an upper bound on the cumulative pagewidth

    A general analytical model of adaptive wormhole routing in k-ary n-cubes

    Get PDF
    Several analytical models of fully adaptive routing have recently been proposed for k-ary n-cubes and hypercube networks under the uniform traffic pattern. Although,hypercube is a special case of k-ary n-cubes topology, the modeling approach for hypercube is more accurate than karyn-cubes due to its simpler structure. This paper proposes a general analytical model to predict message latency in wormhole-routed k-ary n-cubes with fully adaptive routing that uses a similar modeling approach to hypercube. The analysis focuses Duato's fully adaptive routing algorithm [12], which is widely accepted as the most general algorithm for achieving adaptivity in wormhole-routed networks while allowing for an efficient router implementation. The proposed model is general enough that it can be used for hypercube and other fully adaptive routing algorithms

    Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube

    Full text link
    We study a two-parameter generalization of the Catalan numbers: Cd,p(n)C_{d,p}(n) is the number of ways to subdivide the dd-dimensional hypercube into nn rectangular blocks using orthogonal partitions of fixed arity pp. Bremner \& Dotsenko introduced Cd,p(n)C_{d,p}(n) in their work on Boardman--Vogt tensor products of operads; they used homological algebra to prove a recursive formula and a functional equation. We express Cd,p(n)C_{d,p}(n) as simple finite sums, and determine their growth rate and asymptotic behaviour. We give an elementary proof of the functional equation, using a bijection between hypercube decompositions and a family of full pp-ary trees. Our results generalize the well-known correspondence between Catalan numbers and full binary trees

    Accessibility percolation on n-trees

    Full text link
    Accessibility percolation is a new type of percolation problem inspired by evolutionary biology. To each vertex of a graph a random number is assigned and a path through the graph is called accessible if all numbers along the path are in ascending order. For the case when the random variables are independent and identically distributed, we derive an asymptotically exact expression for the probability that there is at least one accessible path from the root to the leaves in an nn-tree. This probability tends to 1 (0) if the branching number is increased with the height of the tree faster (slower) than linearly. When the random variables are biased such that the mean value increases linearly with the distance from the root, a percolation threshold emerges at a finite value of the bias.Comment: 6 pages, 4 figure
    • …
    corecore