324 research outputs found

    Data-driven curation, learning and analysis for inferring evolving IoT botnets in the wild

    Get PDF
    The insecurity of the Internet-of-Things (IoT) paradigm continues to wreak havoc in consumer and critical infrastructure realms. Several challenges impede addressing IoT security at large, including, the lack of IoT-centric data that can be collected, analyzed and correlated, due to the highly heterogeneous nature of such devices and their widespread deployments in Internet-wide environments. To this end, this paper explores macroscopic, passive empirical data to shed light on this evolving threat phenomena. This not only aims at classifying and inferring Internet-scale compromised IoT devices by solely observing such one-way network traffic, but also endeavors to uncover, track and report on orchestrated "in the wild" IoT botnets. Initially, to prepare the effective utilization of such data, a novel probabilistic model is designed and developed to cleanse such traffic from noise samples (i.e., misconfiguration traffic). Subsequently, several shallow and deep learning models are evaluated to ultimately design and develop a multi-window convolution neural network trained on active and passive measurements to accurately identify compromised IoT devices. Consequently, to infer orchestrated and unsolicited activities that have been generated by well-coordinated IoT botnets, hierarchical agglomerative clustering is deployed by scrutinizing a set of innovative and efficient network feature sets. By analyzing 3.6 TB of recent darknet traffic, the proposed approach uncovers a momentous 440,000 compromised IoT devices and generates evidence-based artifacts related to 350 IoT botnets. While some of these detected botnets refer to previously documented campaigns such as the Hide and Seek, Hajime and Fbot, other events illustrate evolving threats such as those with cryptojacking capabilities and those that are targeting industrial control system communication and control services

    XRay: Enhancing the Web's Transparency with Differential Correlation

    Get PDF
    Today's Web services - such as Google, Amazon, and Facebook - leverage user data for varied purposes, including personalizing recommendations, targeting advertisements, and adjusting prices. At present, users have little insight into how their data is being used. Hence, they cannot make informed choices about the services they choose. To increase transparency, we developed XRay, the first fine-grained, robust, and scalable personal data tracking system for the Web. XRay predicts which data in an arbitrary Web account (such as emails, searches, or viewed products) is being used to target which outputs (such as ads, recommended products, or prices). XRay's core functions are service agnostic and easy to instantiate for new services, and they can track data within and across services. To make predictions independent of the audited service, XRay relies on the following insight: by comparing outputs from different accounts with similar, but not identical, subsets of data, one can pinpoint targeting through correlation. We show both theoretically, and through experiments on Gmail, Amazon, and YouTube, that XRay achieves high precision and recall by correlating data from a surprisingly small number of extra accounts.Comment: Extended version of a paper presented at the 23rd USENIX Security Symposium (USENIX Security 14

    Darknet as a Source of Cyber Threat Intelligence: Investigating Distributed and Reflection Denial of Service Attacks

    Get PDF
    Cyberspace has become a massive battlefield between computer criminals and computer security experts. In addition, large-scale cyber attacks have enormously matured and became capable to generate, in a prompt manner, significant interruptions and damage to Internet resources and infrastructure. Denial of Service (DoS) attacks are perhaps the most prominent and severe types of such large-scale cyber attacks. Furthermore, the existence of widely available encryption and anonymity techniques greatly increases the difficulty of the surveillance and investigation of cyber attacks. In this context, the availability of relevant cyber monitoring is of paramount importance. An effective approach to gather DoS cyber intelligence is to collect and analyze traffic destined to allocated, routable, yet unused Internet address space known as darknet. In this thesis, we leverage big darknet data to generate insights on various DoS events, namely, Distributed DoS (DDoS) and Distributed Reflection DoS (DRDoS) activities. First, we present a comprehensive survey of darknet. We primarily define and characterize darknet and indicate its alternative names. We further list other trap-based monitoring systems and compare them to darknet. In addition, we provide a taxonomy in relation to darknet technologies and identify research gaps that are related to three main darknet categories: deployment, traffic analysis, and visualization. Second, we characterize darknet data. Such information could generate indicators of cyber threat activity as well as provide in-depth understanding of the nature of its traffic. Particularly, we analyze darknet packets distribution, its used transport, network and application layer protocols and pinpoint its resolved domain names. Furthermore, we identify its IP classes and destination ports as well as geo-locate its source countries. We further investigate darknet-triggered threats. The aim is to explore darknet inferred threats and categorize their severities. Finally, we contribute by exploring the inter-correlation of such threats, by applying association rule mining techniques, to build threat association rules. Specifically, we generate clusters of threats that co-occur targeting a specific victim. Third, we propose a DDoS inference and forecasting model that aims at providing insights to organizations, security operators and emergency response teams during and after a DDoS attack. Specifically, this work strives to predict, within minutes, the attacks’ features, namely, intensity/rate (packets/sec) and size (estimated number of compromised machines/bots). The goal is to understand the future short-term trend of the ongoing DDoS attacks in terms of those features and thus provide the capability to recognize the current as well as future similar situations and hence appropriately respond to the threat. Further, our work aims at investigating DDoS campaigns by proposing a clustering approach to infer various victims targeted by the same campaign and predicting related features. To achieve our goal, our proposed approach leverages a number of time series and fluctuation analysis techniques, statistical methods and forecasting approaches. Fourth, we propose a novel approach to infer and characterize Internet-scale DRDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring DDoS activities using darknet, this work shows that we can extract DoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DRDoS activities such as intensity, rate and geographic location in addition to various network-layer and flow-based insights. To achieve this task, the proposed approach exploits certain DDoS parameters to detect the attacks and the expectation maximization and k-means clustering techniques in an attempt to identify campaigns of DRDoS attacks. Finally, we conclude this work by providing some discussions and pinpointing some future work

    APT Adversarial Defence Mechanism for Industrial IoT Enabled Cyber-Physical System

    Get PDF
    The objective of Advanced Persistent Threat (APT) attacks is to exploit Cyber-Physical Systems (CPSs) in combination with the Industrial Internet of Things (I-IoT) by using fast attack methods. Machine learning (ML) techniques have shown potential in identifying APT attacks in autonomous and malware detection systems. However, detecting hidden APT attacks in the I-IoT-enabled CPS domain and achieving real-time accuracy in detection present significant challenges for these techniques. To overcome these issues, a new approach is suggested that is based on the Graph Attention Network (GAN), a multi-dimensional algorithm that captures behavioral features along with the relevant information that other methods do not deliver. This approach utilizes masked self-attentional layers to address the limitations of prior Deep Learning (DL) methods that rely on convolutions. Two datasets, the DAPT2020 malware, and Edge I-IoT datasets are used to evaluate the approach, and it attains the highest detection accuracy of 96.97% and 95.97%, with prediction time of 20.56 seconds and 21.65 seconds, respectively. The GAN approach is compared to conventional ML algorithms, and simulation results demonstrate a significant performance improvement over these algorithms in the I-IoT-enabled CPS realm

    Survey of Attack Projection, Prediction, and Forecasting in Cyber Security

    Get PDF
    This paper provides a survey of prediction, and forecasting methods used in cyber security. Four main tasks are discussed first, attack projection and intention recognition, in which there is a need to predict the next move or the intentions of the attacker, intrusion prediction, in which there is a need to predict upcoming cyber attacks, and network security situation forecasting, in which we project cybersecurity situation in the whole network. Methods and approaches for addressing these tasks often share the theoretical background and are often complementary. In this survey, both methods based on discrete models, such as attack graphs, Bayesian networks, and Markov models, and continuous models, such as time series and grey models, are surveyed, compared, and contrasted. We further discuss machine learning and data mining approaches, that have gained a lot of attention recently and appears promising for such a constantly changing environment, which is cyber security. The survey also focuses on the practical usability of the methods and problems related to their evaluation
    • …
    corecore