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ABSTRACT

Cyberspace has become a massive battlefield between computer criminals and com-

puter security experts. In addition, large-scale cyber attacks have enormously ma-

tured and became capable to generate, in a prompt manner, significant interruptions

and damage to Internet resources and infrastructure. Denial of Service (DoS) attacks

are perhaps the most prominent and severe types of such large-scale cyber attacks.

Furthermore, the existence of widely available encryption and anonymity techniques

greatly increases the difficulty of the surveillance and investigation of cyber attacks.

In this context, the availability of relevant cyber monitoring is of paramount im-

portance. An effective approach to gather DoS cyber intelligence is to collect and

analyze traffic destined to allocated, routable, yet unused Internet address space

known as darknet. In this thesis, we leverage big darknet data to generate insights

on various DoS events, namely, Distributed DoS (DDoS) and Distributed Reflection

DoS (DRDoS) activities. First, we present a comprehensive survey of darknet. We

primarily define and characterize darknet and indicate its alternative names. We

further list other trap-based monitoring systems and compare them to darknet. In

addition, we provide a taxonomy in relation to darknet technologies and identify

research gaps that are related to three main darknet categories: deployment, traffic

analysis, and visualization. Second, we characterize darknet data. Such informa-

tion could generate indicators of cyber threat activity as well as provide in-depth

understanding of the nature of its traffic. Particularly, we analyze darknet pack-

ets distribution, its used transport, network and application layer protocols and
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pinpoint its resolved domain names. Furthermore, we identify its IP classes and

destination ports as well as geo-locate its source countries. We further investigate

darknet-triggered threats. The aim is to explore darknet inferred threats and cat-

egorize their severities. Finally, we contribute by exploring the inter-correlation of

such threats, by applying association rule mining techniques, to build threat asso-

ciation rules. Specifically, we generate clusters of threats that co-occur targeting

a specific victim. Third, we propose a DDoS inference and forecasting model that

aims at providing insights to organizations, security operators and emergency re-

sponse teams during and after a DDoS attack. Specifically, this work strives to

predict, within minutes, the attacks’ features, namely, intensity/rate (packets/sec)

and size (estimated number of compromised machines/bots). The goal is to under-

stand the future short-term trend of the ongoing DDoS attacks in terms of those

features and thus provide the capability to recognize the current as well as future

similar situations and hence appropriately respond to the threat. Further, our work

aims at investigating DDoS campaigns by proposing a clustering approach to infer

various victims targeted by the same campaign and predicting related features. To

achieve our goal, our proposed approach leverages a number of time series and fluc-

tuation analysis techniques, statistical methods and forecasting approaches. Fourth,

we propose a novel approach to infer and characterize Internet-scale DRDoS attacks

by leveraging the darknet space. Complementary to the pioneer work on inferring

DDoS activities using darknet, this work shows that we can extract DoS activities

without relying on backscattered analysis. The aim of this work is to extract cyber

security intelligence related to DRDoS activities such as intensity, rate and geo-

location in addition to various network-layer and flow-based insights. To achieve

this task, the proposed approach exploits certain DDoS parameters to detect the

attacks and the expectation maximization and k-means clustering techniques in an

attempt to identify campaigns of DRDoS attacks. Finally, we conclude this work

by providing some discussions and pinpointing some future work.

iv



DEDICATION

I dedicate this thesis to my parents, Antonio and Georgette, my brothers Jean and

Gilbert, and my sister Nathalie. Thank you for your unconditional support with my

studies. I am honored to be a member of your peaceful and lovely family. Thanks for

standing by me and giving me an ever-lasting chance to prove and improve myself

through all my walks of life. I love you all.

v



ACKNOWLEDGEMENTS

- I would primarily like to express my gratitude to my academic father and supervi-

sor, Professor Mourad Debbabi, for the training and guidance during my graduate

studies. Thanks for giving me the chance to work and grow with you. Furthermore,

thanks for teaching me on perfectionism and dedication in the workplace throughout

your professionalism and distinguished leadership skills.

- I thank National Cyber-Forensics & Training Alliance (NCFTA) Canada for pro-

viding facilities for conducting research, this work would not be possible without

their active supports. I thank Farsight Security, Inc. and in particular, Dr. Paul

Vixie, for access to rich data feeds.

- I would also like to express my appreciation towards the students, faculty and

staff of Concordia University. I thank them for providing crucial aid and constant

support throughout my graduate studies at Concordia University.

- I wish to extend my utmost gratitude to all my lab-mates and friends for their

wonderful participation and cooperation. In particular, I would like to thank my

friend, colleague and teammate, Dr. Elias Bou-Harb, who acted as a real brother

during my PhD studies.

- Furthermore, I would like to thank my partner Flora for being so kind and loving.

- Last but not least, I would like to thank God, the natural power of creation, for

giving me strength, courage, dedication, determination, patience, as well as guid-

ance in conducting this long research study, despite all difficulties.

vi



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

2.1 Darknet Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Trap-Based Monitoring Systems . . . . . . . . . . . . . . . . . . . . . 7

2.3 Darknet Inferred Cyber Threats . . . . . . . . . . . . . . . . . . . . . 10

2.4 Darknet Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 DoS Attack Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Protocol-based Flooding Attacks . . . . . . . . . . . . . . . . 16

2.5.2 Protocol-based Reflection Attacks . . . . . . . . . . . . . . . . 18

2.5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 DoS Defense Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6.1 Attack Prevention and Mitigation . . . . . . . . . . . . . . . . 21

2.6.2 Attack Detection . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.3 Attack Attribution . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Darknet Taxonomy 25

3.1 Darknet Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Darknet Variants . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.2 Deployment Techniques . . . . . . . . . . . . . . . . . . . . . 29

vii



3.1.3 Sensor Placement Techniques . . . . . . . . . . . . . . . . . . 31

3.1.4 Sensor Identification Techniques . . . . . . . . . . . . . . . . . 33

3.1.5 Data Handling Techniques . . . . . . . . . . . . . . . . . . . . 35

3.1.6 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Darknet Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Darknet Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Related Surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 Darknet Investigation 82

4.1 Darknet Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.1.1 Inside Darknet . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.1.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Darknet Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Threats Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 Prediction Model for DDoS Activities 107

5.1 Attack Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.1.1 Extracting Backscattered Packets . . . . . . . . . . . . . . . . 111

viii



5.1.2 Extracting Session Flows . . . . . . . . . . . . . . . . . . . . . 111

5.1.3 Inferring DDoS Activities . . . . . . . . . . . . . . . . . . . . 111

5.1.4 Testing for Predictability . . . . . . . . . . . . . . . . . . . . . 113

5.1.5 Predicting DDoS Attacks . . . . . . . . . . . . . . . . . . . . . 115

5.1.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 117

5.2 Predicting Campaigns Targeting Multi-victims . . . . . . . . . . . . . 123

5.2.1 Clustering of DDoS Campaigns . . . . . . . . . . . . . . . . . 124

5.2.2 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Analysis of Reflection (DRDoS) Attacks 132

6.1 Inferring Internet Reflection Activities . . . . . . . . . . . . . . . . . 134

6.1.1 Proposed Approach . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1.2 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Conclusion 159

7.1 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.2 Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Bibliography 171

ix



LIST OF FIGURES

2.1 Trap-based Monitoring Systems - Address Space Distribution . . . . . 10

2.2 Probing Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 DDoS Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 DRDoS Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Trend of Publications Per Year . . . . . . . . . . . . . . . . . . . . . 25

3.2 Darknet Research Taxonomy . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Basic Darknet Deployment - Inspired by [1] . . . . . . . . . . . . . . 27

3.4 Deployment Research Taxonomy - Overview . . . . . . . . . . . . . . 27

3.5 Analysis Research Taxonomy - Overview . . . . . . . . . . . . . . . . 42

3.6 Visualization Research Taxonomy - Overview . . . . . . . . . . . . . 75

4.1 Conficker Worm in 2009 - Traffic Distribution (1 hour interval) . . . . 85

4.2 Sality Botnet SIP Scan in 2011 - Traffic Distribution (12 days) . . . . 86

4.3 The Largest NTP-based DRDoS Attack in History . . . . . . . . . . 87

4.4 Darknet Network and Transport Layer Protocols . . . . . . . . . . . . 89

4.5 Darknet Application Layer Protocols . . . . . . . . . . . . . . . . . . 90

4.6 Darknet TCP Targeted Ports . . . . . . . . . . . . . . . . . . . . . . 91

4.7 Darknet UDP Targeted Ports . . . . . . . . . . . . . . . . . . . . . . 92

4.8 Darknet Sources - Heat Map . . . . . . . . . . . . . . . . . . . . . . . 92

4.9 Threats Sources - Heat Map (in thousands) . . . . . . . . . . . . . . 95

5.1 Flow Chart of the Proposed Approach . . . . . . . . . . . . . . . . . 110

5.2 TCP SYN Flooding on an HTTP Server - Intensity Prediction . . . . 119

5.3 TCP SYN Flooding on an HTTP Server - Size Prediction . . . . . . . 119

5.4 TCP SYN Flooding on a DNS Server - Intensity Prediction . . . . . . 121

5.5 TCP SYN Flooding on a DNS Server - Size Prediction . . . . . . . . 121

x



5.6 ICMP (ping) Flooding - Intensity Prediction . . . . . . . . . . . . . . 122

5.7 Clustered Victims Through Fuzzy Hashing . . . . . . . . . . . . . . . 125

5.8 Clustered Victims Through the Fusion Technique . . . . . . . . . . . 126

5.9 TCP SYN Flooding on Multiple HTTP Servers - Intensity Prediction 128

5.10 TCP SYN Flooding on Multiple HTTP Servers - Size Prediction . . . 128

6.1 DNS-based DRDoS Scenario . . . . . . . . . . . . . . . . . . . . . . . 133

6.2 Packet Count Parameter Estimation . . . . . . . . . . . . . . . . . . 138

6.3 Rate Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.4 DNS Queries Distribution - Semi-annual 2013 Data . . . . . . . . . . 144

6.5 DNS Queries Distribution - March 2013 Data . . . . . . . . . . . . . 144

6.6 Top 5 Source Countries (Attacks) . . . . . . . . . . . . . . . . . . . . 146

6.7 Top 5 Source Countries (Generated Traffic) . . . . . . . . . . . . . . . 146

6.8 Top Requested Domains . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.9 k-means Clustering of DNS Reflection DDoS attacks . . . . . . . . . 149

6.10 IPs Sharing at least 90% Darknet Space . . . . . . . . . . . . . . . . 151

xi



LIST OF TABLES

2.1 Trap-based Monitoring Systems - Comparison . . . . . . . . . . . . . 9

3.1 Darknet Variants Research Papers - Summary . . . . . . . . . . . . . 28

3.2 Deployment Techniques Research Papers - Summary . . . . . . . . . 29

3.3 Sensor Placement Research Papers - Summary . . . . . . . . . . . . . 31

3.4 Sensor Identification Research Papers - Summary . . . . . . . . . . . 33

3.5 Data Handling Research Papers - Summary . . . . . . . . . . . . . . 35

3.6 Large-Scale Darknet Projects - Summary . . . . . . . . . . . . . . . . 36

3.7 Profiling Research Papers - Summary . . . . . . . . . . . . . . . . . . 43

3.8 Filtering & Classification Research Papers - Summary . . . . . . . . . 45

3.9 Backscatter Research Papers - Summary . . . . . . . . . . . . . . . . 46

3.10 Misconfiguration Research Papers - Summary . . . . . . . . . . . . . 48

3.11 Threat Profiling Research Papers - Summary . . . . . . . . . . . . . . 50

3.12 Anomalies Detection and Mitigation Research Papers - Summary . . 52

3.13 DDoS Research Papers - Summary . . . . . . . . . . . . . . . . . . . 57

3.14 Worm Investigation Research Papers - Summary . . . . . . . . . . . . 60

3.15 Botnet Research Papers - Summary . . . . . . . . . . . . . . . . . . . 64

3.16 Scanning Research Papers - Summary . . . . . . . . . . . . . . . . . . 67

3.17 Spoofing Investigation Research Papers - Summary . . . . . . . . . . 69

3.18 Events Research Papers - Summary . . . . . . . . . . . . . . . . . . . 70

3.19 Visualization Research Papers - Summary . . . . . . . . . . . . . . . 76

4.1 Protocols Distribution - Inspired by [2] . . . . . . . . . . . . . . . . . 84

4.2 Top TCP-based Services . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Packets Distribution - Nature of Traffic . . . . . . . . . . . . . . . . . 88

4.4 Protocols Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xii



4.5 IP Class Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Darknet Threats and Corresponding Severities . . . . . . . . . . . . . 93

4.7 Vectors of Darknet Threats . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Darknet Threat Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 Summary of the Analyzed DDoS Case Studies . . . . . . . . . . . . . 118

5.2 HTTP-based TCP SYN Flooding - Absolute Prediction Error (%) . . 120

5.3 DNS-based TCP SYN Flooding - Absolute Prediction Error (%) . . . 122

5.4 ICMP (ping) Flooding - Absolute Prediction Error (%) . . . . . . . . 123

5.5 Summary of the DDoS Campaign Clustering Approach . . . . . . . . 126

5.6 Summary of the Analyzed DDoS Campaign Case Study . . . . . . . . 127

5.7 TCP SYN Flooding on Multiple HTTP Servers - Prediction Error (%)127

6.1 DNS DRDoS Attacks Identification Parameters . . . . . . . . . . . . 137

6.2 Classification per Attack Rate . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Chosen Clustering Attributes . . . . . . . . . . . . . . . . . . . . . . 142

6.4 Top 5 DNS Query Type - 2013 Semiannual Darknet Data . . . . . . . 145

6.5 k-means Clustered Instances . . . . . . . . . . . . . . . . . . . . . . . 148

6.6 k-means Training Cluster Centroids . . . . . . . . . . . . . . . . . . . 149

7.1 Summary of DNS Amplification DDoS Traces (February 2013) . . . . 168

7.2 Summary of DNS Amplification DDoS Traces (March 2013) . . . . . 169

7.3 Summary of DNS Amplification DDoS Traces (April 2013) . . . . . . 170

xiii



Chapter 1

Introduction

Today, the safety and security of our society are entirely dependent on having a

secure Information Communication Technology (ICT) infrastructure, which spans

over public and private organizations in the sectors of government, defense, en-

ergy (i.e., Nuclear and Power), telecommunications (i.e., mobiles), public health

(i.e., hospitals), emergency services (i.e., 911), agriculture, finance (i.e., banks) and

transportation (i.e., aviation). This infrastructure is controlled and operated using

the Internet (also known as cyberspace): a network of numerous inter-connected

computers.

Recent Internet events have demonstrated that corporations and governmental

organizations could be subjected, nearly instantaneously and in full anonymity, to

large-scale disrupting cyber attacks with the potential to lead to severe privacy, secu-

rity and economic consequences (i.e., cyber terrorism, denial of service, information

theft, spam, fraud, etc.). For instance, a nuclear power plant was targeted for the

first time by Stuxnet, a complex computer virus discovered in 2010 [3]. In 2012, a

more complicated malware known as Flame [4] was found to have massive espionage

capabilities. There has been an increasing trend of cyber attacks, which have been

used to exhaust and/or deny services of large organizations (.i.e., Google, Facebook,

Government Websites) through the flood of computer network traffic to the victim
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targeted by the attack. For example, in 2014, the Internet experienced the largest

DoS threat in history with 400 Gbps of bandwidth [5]. In addition, orchestrated

cyber campaigns, which occur when a given cyber force conducts a series of planned

and coordinated cyber attacks, leverage botnet (networks of orchestrated and in-

fected computers) to communicate and execute attacks; such threats have caused

over $110 billion in losses worldwide [6]. These events constitute a serious threat

with the potential to endanger human lives, especially when physical entities such

as smart grids [7] and nuclear power plants can be reached through cyberspace. The

existence of widely available encryption and anonymity techniques greatly increases

the difficulty of the surveillance and investigation of cyber attacks. In this context,

the availability of relevant cyber monitoring is of paramount importance.

One of the effective ways to observe Internet activity is to employ passive

monitoring using sensors or traps such as darknet [8]. Darknet data is defined as

traffic targeting advertised, but unused, IP addresses. Since these network addresses

are unused, they represent new hosts that have never been communicating with other

devices, neither for benign or legitimate communication. As a result, any observed

traffic destined to these non-interactive hosts raises suspicion and hence necessitates

investigation. These darknet-based monitoring systems are designed through these

unused IP addresses to attract or trap attackers for intelligence gathering. For

instance, darknet has been used in the past to extract insights on: 1) probes or

scanning activities [9] due to worms, bots and other automated exploit tools; 2)

DDoS attacks due to victims’ reply (backscatter) packets to spoofed IP addresses

[10]; and 3) other activities, such as misconfiguration [1], and political events [11].

Darknet is an asset for network security. Several deployment techniques [12] were

invented, various projects (i.e., CAIDA1) were built, and numerous visualization

techniques were used in order to observe the data.

1The UCSD Network Telescope: http://www.caida.org/projects/network_telescope/
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Denial of Service is an attempt to make a computer or network resources un-

available. It consists of attacks that are deployed to temporarily or indefinitely

shutdown services. The timing of such attacks can be coordinated to exploit the

availability of critical organization infrastructures by directing an enormous flood of

Internet traffic towards targeted Internet Protocol (IP) addresses. By flooding the

available bandwidth with intensive traffic, DDoS can effectively bring down a service

with potential loss of brand name, trust, and financial revenue. Indeed, DoS activ-

ities continue to dominate today’s attack landscape. In a recent report by Arbor

Networks [13], it was concluded that 48% of all cyber threats are DoS. Further-

more, it was stated that the top 4 perceived threats for the next 12 months will be

DDoS related, targeting customers, network and service infrastructures [14]. Some

governmental organizations, corporations as well as ICT infrastructures were also

recently deemed as DDoS victims [15–17]. Moreover, a recent event demonstrated

that one of the largest cyber security organizations, namely Spamhaus, became a

victim of a 300 Gbps Domain Name System (DNS) DDoS attack [18]. In addition

to this, in 2014, the Internet has experienced the largest reflection DDoS attack in

history [5]. Thus, DDoS attacks are a significant cyber security problem, causing

momentous damage to several victims as well as negatively affecting, by means of

collateral damage, the availability of services, business operations, market share,

the confidence, as well as the reputation of the organization under attack. In this

thesis, we leverage darknet data to investigate DDoS and DRDoS activities, which

are special types of DoS events. In particular, we detect, analyze, predict and assess

the threat behind their activities to generate DoS insights, which can be leveraged

for situational awareness and mitigation purposes.
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1.1 Objectives

The aim of this thesis is to generate cyber threat intelligence related to the inference

of DoS activities. In this context, the thesis’ objectives are listed below:

• Perform darknet data analysis and characterization.

• Provide inferences and insights related to DoS threats in addition to generate

global cyber intelligence related to large-scale cyber activities.

• Investigate DoS activities in an attempt to predict their events and attribute

such activities to certain campaigns as well as to certain Internet-scale mali-

cious events.

• Develop approaches that can infer and assess the impact of large-scale DoS

attacks and campaigns on the Internet.

• Design, implement and deploy a cyber security capability to infer Internet and

DoS events.

1.2 Contributions

This thesis attempts to tackle the above-mentioned objectives. To this end, our

contributions can be summarized as follows:

• Provide the first state-of-the-art survey on darknet research and the largest

taxonomy of Internet passive monitoring.

• Leverage intrusion detection and data mining approaches on darknet for indi-

cating cyber threat activities.

• Design and implement statistical and fuzzy hashing approaches for character-

izing and inferring cyber campaigns of DoS attacks.
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• Propose a prediction model based on time series techniques with capabilities to

assess prediction, forecast and hence mitigate future DDoS threat occurrences.

• Propose a novel approach to fingerprint DRDoS activities through darknet

analysis and identify the first real traces of large DNS reflection attacks.

In a nutshell, our work aims at studying darknet to generate DoS cyber intel-

ligence. The latter could be adopted for immediate detection, mitigation and even

attribution of DoS attacks.

1.3 Organization

The structure of this thesis is as follows. In Chapter 2, we primarily provide a back-

ground information on darknet. As a result, we define darknet and compare it to

other trap-based monitoring systems. Furthermore, we provide some examples on

its operation online. In Chapter 3, we provide a taxonomy in relation to darknet

technologies and identify research gaps that are related to three main darknet cat-

egories: deployment, traffic analysis, and visualization. In Chapter 4, we elaborate

on the work related to the investigation of darknet traffic, namely, characterization

of its traffic and correlation among inferred threats. In Chapter 5, we describe the

design and implementation of our DDoS prediction model. To this end, we also

forecast DDoS cyber campaigns attempts. In Chapter 6, we elaborate on our novel

approach to fingerprint DDoS reflection activities. Finally, Chapter 7 concludes this

thesis, summarizes its contributions and highlights some research gaps that pave the

way for future work.
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Chapter 2

Background

This chapter provides an overview of darknet and highlights the focus of our survey

by: 1) Providing definitions that list the alternative names; 2) discussing the differ-

ences between darknet and other trap-based monitoring systems; and 3) providing

some examples of darknet and its operation on the Internet.

2.1 Darknet Definitions

The term darknet can refer to the following:

• Any communication system that operates by stealth and conceals its users’

identity. Freenet [19] and BitTorrent [20] software are two examples that fit

in this category.

• Servers and programs used to illegally distribute copyrighted material [21].

Such systems can include peer-to-peer file sharing technologies such as Napster

and Gnutella [22].

• Servers configured to trap adversaries and collect suspicious data. This type

of darknet runs in a passive mode without interacting with attackers. This is

similar to the darknet project of Team Cymru [23].
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In this work, we refer to darknet as per the last definition. Since these servers run

in passive mode and correspond to unused hosts or devices, any observed traffic

destined to them raises suspicion and hence necessitates investigation.

It is noteworthy to mention that the word darknet has been known under vari-

ous alternative terms, including darkspace, blackhole monitors, unused IP addresses,

network telescopes, unsolicited network traffic, unwanted traffic, non-productive or

non-responsive traffic, spurious traffic, Internet background radiation (IBR), unal-

located but reachable IP addresses and unassigned IP addresses. To harmonize the

terminology, we use the word darknet throughout this thesis.

2.2 Trap-Based Monitoring Systems

Trap-based monitoring systems aim to deploy online sensors to trick and trap ad-

versaries to collect malicious activities. Several systems leverage this approach such

as darknet [8] and greynet [24]. A thin line separates various forms of trap-based

network monitoring systems. In this subsection, several monitoring systems are

contrasted and classified based on their types, interactivity levels, complexity, data

collection and security aspects.

• Darknet: An IP address block configured in passive mode. Most of the darknet

sensors return “unreachable” errors when a request is sent to listening hosts.

This error explains that a certain host or port is not reachable. Darknet

implementation is considered simple since these sensors do not communicate

with the initiator of the communication. The captured traffic therefore consists

mostly of the first request in communication.

• IP Gray Space: These addresses refer to devices that are not assigned to any

host throughout a given time period (i.e., 1 hour, 1 day). Conceptually, IP

gray space is similar to darknet; the only difference is that IP gray space

addresses are unused only for a limited time, whereas darknet addresses are
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permanently unused. Unlike darknet, IP gray space might prove more difficult

to be detected by an attacker since the underlying hosts might be active and

operating as a regular machine during various periods of time. The aim is to

imitate regular hosts.

• Honeypot: This is an interactive computer system, mostly connected to the

Internet, that is configured to trap attackers. Honeypots are similar in nature

to darknet but with more specific goals. Honeypots require more resources

than darknet, since they interact during communication. As far as interaction

is concerned, there are three major types of honeypots, namely, low, medium

and highly interactive. A low-interactive honeypot is configured to interact

with the initiator of the communication by emulating basic services such as

replying to Internet Control Message Protocol (ICMP) ECHO request (i.e.,

Ping). A medium-interactive honeypot is similar to a low-interactive one but

with further interactions and a greater number of emulated services for more

data capturing and analysis. A highly interactive honeypot is a computer sys-

tem that does not emulate services; it instead runs a fully-fledged, potentially

vulnerable, operating system, services and applications.

• Honeynet: This network is simply a group of honeypots used to deploy dis-

tributed trap-based network monitoring systems for large-scale data collection

and analysis.

• Greynet: This network is populated with active IP addresses interspersed with

darknet addresses. In other words, greynet uses both darknet (passive) and

honeypots (active) in the same monitoring IP address space. The purpose is to

make the monitored IP space appear as a more attractive trap for adversaries.

Take for example, a range of IPs that have both darknet and other active

sensors running fake services. This scenario imitates a typical organization

network that hosts both running and unused IP addresses, which may trick
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the attacker into thinking that the whole range of IPs in the monitored block

is an appropriate target.

Table 2.1 provides a comparison of trap-based network monitoring systems

based on several features: type of sensor, interactivity with the initiator, deploy-

ment complexity, data collection, and security of the monitoring IP address space.

First, as mentioned earlier, darknet and IP gray space share similar features. These

two trap-based monitoring systems are considered secure since they do not interact

with the adversary. Furthermore, since they run in passive mode (null interactivity),

their deployment difficulty and data gathering features are considered low compared

to other monitoring systems. Second, regarding honeypots, the interactivity, the

complexity and the data gathering features are mostly proportional to each other.

For instance, the more interaction there is with the adversary, the more complex

the implementation to setup and the greater is the amount of data that needs to be

collected. However, all honeypots with an interactive feature are potentially vulner-

able in terms of security. Finally, since greynet consists of darknet and honeypots,

it is considered a more comprehensive monitoring system and could therefore have

more possibilities in terms of interactivity, complexity, data collection and security.

Monitoring System IP Type Interactivity Complexity Data Collection Security

Darknet passive null low low secure

IP Gray Space
temporarily

passive
null low low secure

Low-Interactive
Honeypot

active low low low vulnerable

Medium-Interactive
Honeypot

active medium medium medium vulnerable

High-Interactive
Honeypot

active high high high vulnerable

Greynet
active
passive

low
medium
high

low
medium
high

low
medium
high

secure
vulnerable

Table 2.1: Trap-based Monitoring Systems - Comparison

Figure 2.1 provides a graphical comparison between these major trap-based

monitoring systems.
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Figure 2.1: Trap-based Monitoring Systems - Address Space Distribution

First, the darknet contains only unused addresses running in passive (inactive)

mode. Second, the IP gray space (at time t + δt) is similar to darknet. However,

the same address space was already active in a previous period of time (time t).

Third, honeypots can run in various modes, either solely on a network or with other

active/passive hosts. The latter case represents the greynet address distribution.

It is worthy to mention that some monitoring systems have the capability

to run in both darknet and honeypot modes, a feature, which allows honeypots to

capture more data. Given that our aim is to investigate passive monitoring of unused

IP addresses, the scope of our work covers mainly the study of darknet, greynet,

IP gray space and few honeypots that solely target unused address space, such as

Honeyd [25] and LaBrea Tarpit [26].

2.3 Darknet Inferred Cyber Threats

Darknet is indeed an effective approach to infer various Internet activities and

threats related but not limited to the following:
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Scanning/Probing or Reconnaissance Activities

Internet scanning is the task of probing enterprise networks or Internet wide ser-

vices, searching for vulnerabilities or ways to infiltrate IT assets. Scanning can be

initiated by computer worms, bots and other automated exploit tools. Scanning is

a significant cyber security concern. The latter is due to the fact that probing is

commonly the primary stage of an intrusion attempt that enables an attacker to

remotely locate, target, and subsequently exploit vulnerable systems. It is basically

a core technique and a facilitating factor for cyber attacks.

Distributed Denial of Service (DDoS) Attacks

DDoS attack is an attempt to make a computer and/or network resources unavail-

able. It consists of attacks that are deployed by one person or a group of people

to temporarily or indefinitely shutdown services. The timing of such attacks can

be coordinated to exploit the availability of critical organization infrastructure by

directing enormous flood of Internet traffic to a small set of targeted IP addresses

belonging to a target organization. By flooding the available bandwidth with inten-

sive traffic, DDoS perpetrators can effectively bring down a service with potential

loss of financial revenue. In addition, DDoS attacks can be coordinated via a botnet,

which is a platform to orchestrate and manage cyber attacks.

Distributed Reflection Denial of Service (DRDoS) Attacks

DRDoS is a special type of DDoS attacks. In a typical DRDoS scenario, the attack-

ers aim to hide their identities by leveraging third parties such as web servers and

routers to redirect malicious traffic to the victim. In this case, all these third parties

are called reflectors. Any host that responds to any incoming request can become a

potential reflector. DRDoS threats have the ability to amplify attack traffic, which

makes the threat even more severe. A well known type of DRDoS attacks is the
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DNS amplification threat. In this attack, an adversary tries to generate a flood of

tiny DNS requests, but with high amplified replies, on the Internet to reach open

amplifiers. As a result, all amplified replies are sent back from these amplifiers (re-

flectors) to the victim.

More details on darknet activities and threats can be found in Chapter 3.

2.4 Darknet Operation

In this section, to achieve a better understanding on how darknet operates, we pro-

vide a brief background information related to some darknet scenarios. In particular,

we show how darknet can be exploited on the Internet to generate various elements

of cyber threat intelligence, including probing, DDoS and DRDoS activities.

A darknet is indeed an effective approach to infer various Internet-scale prob-

ing activities [27]. Figure 2.2 presents an illustrative example, in which a probing

machine is scanning the Internet. Such machine could have been previously infected

by a worm that is trying to propagate, or perhaps is participating in automated

Internet-scale scanning [28]. Some of these network probing packets can hit the

network telescope and thus are subsequently captured. Recall that the probing

machine, while spraying its probes across the Internet, cannot probably avoid the

network telescope as it does not have any knowledge about its existence. Further,

it has been shown in [29] that it is extremely rare if not impossible for a probing

source to have any capability dedicated to such avoidance.

Darknet traffic analysis is an effective technique in pinpointing victims of DDoS

attacks [30]. Figure 2.3 illustrates such scenario. The attacker is directed to launch a

DDoS attack towards the victim. To hide its identity, the attacker spoofs its address

and replaces it with a random IP address. Such random address could happen to

be that of the darknet. When the attack is launched, the reply packets from the
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Figure 2.2: Probing Activities

victim will be directed towards some dark IP address. Traces that hit the darknet

are often dubbed as backscattered packets [30] and could be effectively employed to

infer that the victim has been the target of a DDoS attack.

In the last scenario, a darknet is leveraged to infer DRDoS attacks [31]. In-

deed, as previously mentioned, such attacks are an emerging form of DDoS attacks

that rely on the use of publicly accessible UDP servers [32]1, which act as “open

amplifiers” of the attack. The bandwidth amplification factors are function of the

instrumented protocol. The idea is to send small queries to such amplifiers in which

the replies, that aim at flooding the victim, are orders of magnitude larger. Recall

that such approaches are behind the notorious 300 and 400 Gbps attacks that hit the

Internet in the last couple years [32]. More on amplification attacks can be found in

Section 2.5.2. Figure 2.4 depicts this scenario. Commonly, the attacker will spray

1Although TCP amplifiers could be vulnerable to such abuse [33]
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Figure 2.3: DDoS Activities

the Internet with such spoofed queries in a hope to reach as many open amplifiers

as possible in order to achieve a large amplification factor. This case will occur in

the scenario where attackers do not know in advance the IP addresses of Internet

open amplifiers. We argue that such generated requests are not probes intended to

gather information, since the attackers in this case do not aim to build/manage a

list of open amplifiers nor do they want to jeopardize being detected (by using their

real IP addresses, which is typical in probing activities). Intuitively, some of those

requests will hit the darknet and hence will be captured. Requests that actually

reach those servers will be amplified and directed towards the victim.
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2.5 DoS Attack Techniques

DoS attacks can be initiated in two major ways. The first is designed to consume

host’s resources. In this scenario, the victim could be a web service or proxy con-

nected online. Obviously, any host has limited resources to process information. In

a normal network operation, if the network flows exceeds this limit, the destina-

tion host starts dropping packets and informs the sender. As a result, legitimate

senders slow down their sending rates to keep the operation balanced between the

other host(s). In contrary, malicious users keep flooding victims to exhaust their

resources, such as memory and CPU usage. The second way has impact on the

consumption of network bandwidth, which could be more devastating than the first

way. In this scenario, the attacks congest victims’ network with corrupted or even

legitimate flood of packets. Therefore, all benign requests of services destined to
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such victims will be partially or fully denied. To help readers gain a better under-

standing of such DDoS attacks, we list some well-known attacks in the following

sections.

2.5.1 Protocol-based Flooding Attacks

Protocol-based attacks leverage vulnerabilities in Internet protocols to flood the

victims with legitimate or corrupted packets. Some of the classical examples of

these attacks are similar to SYN flooding and ICMP flooding. We describe the

major flooding attacks below.

Transmission Control Protocol (TCP) SYN Flood

A SYN flood DoS attack exploits a known weakness in the TCP connection sequence,

the three-way handshake, wherein a SYN request to initiate a TCP connection with a

host must be answered by a SYN-ACK response from that host, and then confirmed

by an ACK response from the requester. In a SYN flood scenario, the requester

sends multiple SYN requests, but either does not respond to the host’s SYN-ACK

response, or sends the SYN requests from a spoofed IP address. Either way, the

host system continues to wait for acknowledgment for each of the requests, binding

resources until no new connections can be made, and ultimately resulting in a DoS

attack.

User Datagram Protocol (UDP) Flood

This DoS attack leverages UDP, a session-less networking protocol. This type of

attack floods random ports on a remote host with large number of UDP packets,

causing the host to frequently check for the application listening on that port, and

reply with an ICMP Destination Unreachable packet if the application is not found.

This process exhausts hosts CPU and memory resources, and can ultimately lead

to inaccessibility.
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Internet Control Message Protocol (ICMP) Flood

Similarly, an ICMP flooding attack overwhelms the target resource with ping or

ICMP Echo Request traffic. Such attack can exhaust both incoming and outgoing

bandwidth capacity and can cause a delay or shutdown in services. A well known

type of ICMP flooding threat is the Ping of Death (POD) attack.

Domain Name System (DNS) Flood

In a DNS flood scenario, malicious users target one or more DNS servers, attempting

to bombard and turning down DNS root operations. In a typical DNS attack,

the attacker attempts to overwhelming server resources and impeding the servers

ability to direct legitimate DNS requests. DNS flooding are different than DNS

amplification attacks. In general, DNS runs on top of UDP transport, which is

a connection-less service. As such, spoofing DNS flooding attacks is more easily

accomplished.

Hypertext Transfer Protocol (HTTP) Flood

HTTP is a well-known application layer protocol running on top of TCP port 80.

HTTP flooding attacks hits web servers with a large amount of HTTP requests.

HTTP requests can be crafted by attacks to avoid detection. These attacks are

known to leverage botnet infrastructure to orchestrate attacks on one or many vic-

tims. The large usability of the web (www) services over the Internet has made HTTP

flooding attacks popular and hence difficult to filter and detect.

Session Initiation Protocol (SIP) Flood

The recent deployment of Voice over IP (VoIP) telephony and its usability have

created the SIP services. Unfortunately, attackers can leverage this technology to

flood telephony services with DoS attacks. SIP services run generally on top of UDP
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port 5060. This telephony service is designed to provide easy service and use for

legitimate services. Adversaries leverage vulnerabilities in SIP services, for example,

to flood the victim with spoofed SIP invite packets.

2.5.2 Protocol-based Reflection Attacks

Recent events have demonstrated that amplification or reflection DoS attacks are

probably the most effective and devastating cyber attacks. We list below the major

ones such as DNS-based, NTP-based reflection attacks, among others.

Network Time Protocol (NTP) Amplification

NTP servers support monlist requests, which most NTP server implementations

accept in their short form of only 8 bytes. Upon receiving a monlist request, an

NTP server shares its recent clients in up to 100 UDP datagrams with 440 bytes

payload each. One response datagram specifies statistics for NTP clients (such as the

client’s IP address, its NTP version and the number of requests) who contacted this

NTP server. This response datagram is a useful debugging feature in the legitimate

use case. The total response length depends on the number of client statistics a

server shares upon request. An attacker can abuse this feature to amplify DoS

traffic to a victim.

Domain Name System (DNS) Amplification

Name lookup (i.e., A or MX records), the traditional use case of DNS, have low

amplification rates. Traditionally, the size of UDP replies was limited to 512 bytes

and DNS switched to TCP communication for larger replies. However, many DNS

servers adopted the DNS extensions (EDNS0) that allow for UDP responses of up

to 4096 bytes. Attackers may abuse ANY request with EDNS0, for which a server

returns all known DNS record types for a given domain. A well-known attack abuses
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DNS open resolvers to function as amplifiers. Attackers can enforce high amplifi-

cation rates by resolving ANY requests from domains that result in large responses.

Attackers can even configure a domain they control such that its authoritative name

server responds with 4096-byte-wide responses. Another reason behind this amplifi-

cation is the deployment of DNSSEC, in which each resource record is accompanied

with a typically 1024-bit-wide signature in a special RRSIG record.

Simple Network Management Protocol (SNMP) Amplification

Certain SNMP version (i.e., v2) supports the GetBulk operation, in which a device

returns a list of SNMP identifiers that can be monitored. In the legitimate use case,

this request can be used to iterate all monitoring values. An attacker can abuse this

feature to amplify DoS traffic to a victim. The exact response size is determined by

the number and length of identifiers in the returned item list.

Simple Service Discovery Protocol (SSDP) Amplification

Upon SSDP discovery requests, UPnP-enabled hosts respond with one reply packet

per service they have configured. The response size depends on the configured

services and the length of the service name. Some amplifiers respond with a few

reply packets only, as they offer fewer services. An attacker could thus abuse this

service by sending SSDP request packets spoofed with the victims IP address as the

source of the request.

Character Generator Protocol (CharGen) Amplification

According to RFC 864, CharGen servers reply with random characters to incoming

UDP datagrams of any length. An attacker may leverage this service on many

servers and use small UDP packets with a spoofed victim IP address as the source

to overwhelm the target.
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Quote of the Day (QOTD) Amplification

Similar to CharGen, Quote of the Day servers (RFC 865) also send replies to UDP

datagrams of any length. So an attacker may leverage this service on many servers

and use small UDP packets with a spoofed victim IP address as the source to

overwhelm the intended target.

Quake 3 Amplification

Quake 3 game servers are found to have the highest amplification when asking a

server for its current status, a 15-byte-wide request. The reply is significantly larger

and includes, i.e., the detailed server configuration and a list of current players.

Given a number of Quake 3 servers with a large number of users currently active on

the server; an attacker may leverage this service on any number of Quake 3 servers

by sending status requests to the server and replacing the source IP address with

that of the victim in order to overwhelm the target.

Network Basic Input/Output System (NetBios) Amplification

For NetBios, an attacker may achieve DoS amplification using a name lookup, for

which a receiving Windows system responds with its current network and host name

configuration. The response sizes are influenced by the host names and network con-

figurations of the amplifiers. An attacker may send requests to a NetBios capable

server spoofing the victims IP address as the source so that the victim receives the

overwhelming reply traffic.

2.5.3 Summary

We have presented several DoS attacks, namely, flooding and amplification. It is

noteworthy to mention that the types of threats are not always mutually exclusive.
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In practice, an adversary might leverage several features of multiple types in only one

attack. For instance, TCP SYN flooding and ICMP flooding are generally initiated

simultaneously against DNS root servers. As far as our approach is concerned, based

on the aforementioned inference techniques of Section 2.4, we are able to identify all

the aforementioned types of attacks only if their traces hit our darknet sensors.

2.6 DoS Defense Mechanisms

In general, there are three defense mechanisms against DoS attacks, namely, at-

tack prevention and mitigation, attack detection, and attack attribution. Attack

prevention aims to fully/partially block the attack or successfully handle its flood.

Attack detection identifies the occurrence of the attack. Finally, attack attribution

identifies the source of the attack. It is noteworthy to mention that a complete DoS

defense mechanism consists of prevention, detection and attribution techniques.

2.6.1 Attack Prevention and Mitigation

The aim of attack prevention and mitigation is to completely or partially block

the attack before causing any interruption of service. As shown earlier, since DoS

attacks are generally initiated from spoofed (fake) IP addresses, some of the best

techniques used to block such threats are to leverage ingress/egress filtering [34].

The latter is an efficient technique to control incoming and outgoing packets on

the local or Internet network. For instance, an organization can block all outgoing

packets coming from (leaving) its network if they do not have source IP addresses

registered under the name of this organization. The same technique can be imple-

mented at any Internet service provider or Internet backbone associations. One of

the protocols that operate based on the same concept is the Source Address Validity

Enforcement (SAVE) [35]. Moreover, some techniques are protocol-dependent and

are designed with security features to prevent or mitigate DDoS. For instance, the
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Stream Control Transmission Protocol (SCTP) [36] runs on the transport layer with

advanced security features to defend against TCP SYN flooding attack. Although

this protocol can mitigate the threat of SYN flooding, its implementation requires

more attention because it may cause other types of DDoS such as the ones using

malformed ICMP packets and INIT (initialization packet) flooding attack [37]. Sim-

ilarly, the Datagram Congestion Control Protocol (DCCP) [38] has a mechanism

to allow the server to avoid holding any state of unacknowledged communication

during a handshake. Since the development of DCCP is relatively new, develop-

ers must be very careful while implementing DCCP services. For instance, one of

the DoS security concerns can happen when associating applications with service

codes2. This operation requires additional processing time to interpret information

and hence may cause a DoS attack. Last but not least, a recent implementation

of cloud-based DDoS protection mechanisms [39] leverage several servers to act on

behalf of the victim during an attack. The latter technique is more recent than the

other ones and is found to be efficient, but not perfect, to mitigate the impact of

attacks [40].

2.6.2 Attack Detection

The most effective way to defend against DoS attacks is attack prevention. However,

since adversaries are always discovering new techniques to attack a victim, preven-

tion may not be always successful. Therefore, attack detection is also a fundamen-

tal step to defend against DoS attacks. This technique can help in fingerprinting

a malicious flood and provide useful insights on several attack parameters such as

rate, attack type, signature, CPU and memory usage, among others. Attack detec-

tion techniques leverage several algorithms, namely, flow-based, signature-based and

anomaly-based. Flow-based algorithms leverage the flood parameters (i.e., attack

speed, nature of packets) to detect attacks. For instance, the approach proposed by

2Internet Engineering Task Force: The DCCP Service Codes
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Moore et al. [30] is a typical flow-based detection algorithm that leverages backscat-

ter packets to infer DDoS activities. Signature-based algorithms leverage packet

information to match a malicious activity based on a database of signatures. This

method cannot identify zero-day (new) DoS attacks. A network-based intrusion

detection system such as snort [41] runs such algorithms. While signature-based

algorithms can identify solely known attacks, anomaly-based approaches use train-

ing models and pattern recognition techniques to identify floods of old/new DoS

threats.

2.6.3 Attack Attribution

Attack attribution aims at identifying the source of attack and affiliating them with

a specific IP address. Since DoS attacks are usually leveraging spoofed IP addresses,

the attribution of attacks is a difficult problem. In fact, IP spoofing is still a funda-

mental weakness of Internet operations. Two reasons are behind this issue. First,

the availability of tools and techniques to initiate packets with forged IP addresses.

Second, the stateless nature of Internet routers, which generally store information

and forward packets to the next hop only. Some of the attack traceback techniques

that are used include active interaction, probabilistic and hash-based schemes. First,

a main feature of the active interactive approach is that on the way to the victim,

routers interact with adversaries in a certain way (i.e., forwarding requests). As

such, this technique traces the source of the attack based on the reaction of flood

during the attack. Second, in general, probabilistic IP traceback models leverage

the fact that routers probabilistically insert fragmentary network path data in the

incoming packets. As such, this technique attempts to reconstruct the flow path

using these inserted information. Finally, many probabilistic approaches can fail,

especially when large-scale DoS attack traffic is distributed over many routers in

different locations. Consequently, a hash-based IP traceback approach is proposed
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to store information on each packet passing through routers. Regardless of the tech-

nique used in addressing DoS attribution and spoofing, this problem is still a major

concern for Internet users.

2.6.4 Summary

We listed above the major defense mechanisms against DoS attacks. We divided the

techniques over three categories, namely, attack prevention and mitigation, attack

detection, and attack attribution. Although darknet can be used to attribute DDoS

attacks [42], our approach falls mainly in the attack detection research area. Obvi-

ously, uncovering the type of the attack, and the techniques behind it can help in

understanding the malicious behavior and hence can solve the problem. Therefore,

our analytics and assessment of attacks can be leveraged by academia and industry

to help in preventing, mitigating, and attributing DoS cyber attacks.
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Chapter 3

Darknet Taxonomy

Despite the fact that the idea of monitoring unused IP addresses started in the early

90’s [9, 43], we provide a background information that mainly focuses on the study

of darknet research during the past thirteen years. The reason behind choosing this

period is that the major contributions started after 2001.

Figure 3.1: Trend of Publications Per Year

Figure 3.1 represents the trend of the darknet research from 2001 to 2013 in

terms of research publications. Some of the important contributions include the

discovery of the relationship between backscatter traffic and DDoS attacks, which

emerged in 2001 [30], the trend of worms propagation and analysis between 2003 and
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2005 [44–46], the use of time series and data mining techniques on darknet traffic

raised in 2008 [47], and finally the monitoring of large-scale cyber events [11], which

began in the past few years.

Our taxonomy classifies current darknet research into three major areas, namely,

darknet deployment and setup, analysis and measurement of darknet data through

deployed sensors, and tools and techniques for the visualization and representation

of its traffic. A high level overview of the proposed taxonomy is shown in Figure

3.2.

Darknet 
Research

Deployment Analysis Visualization

Figure 3.2: Darknet Research Taxonomy

3.1 Darknet Deployment

The first step in darknet monitoring is the deployment of sensors, which aims to

capture network traffic. This exercise requires an understanding of the network ar-

chitecture and a careful configuration of the dynamic host server or the upstream

router to forward unreachable packets to darknet sensors. A basic darknet deploy-

ment architecture is shown in Figure 3.3.

This section provides insights on the elements of darknet deployment, namely,

darknet variants, as well as techniques such as sensor placement/identification and

data handling, and projects. Figure 3.4 provides a taxonomy of deployment research

works based on the aforementioned elements.
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3.1.1 Darknet Variants

Recalling Section 2.2, darknet variants are the deployment mechanisms of trap-

based monitoring systems using techniques similar to those of a darknet. This part

thus includes deployment of IP gray address space and greynet monitors. Table 3.1

summarizes the papers on darknet variants.

Publications Approach/Technique Contribution Tool/Project

[24] Defining and Characterizing Greynet Development Custom
[48] Heuristic Algorithm IP Gray Space Development Custom
[49] Heuristic Algorithm IP Gray Space Development Custom
[50] Statistics Gray Phone Space Development Greystar

Table 3.1: Darknet Variants Research Papers - Summary

Harrop et al. [24] define and assess the concept of a greynet, a network address

space that is populated with darknet addresses mixed with active IP addresses.

Using data collected from a university network, the authors evaluate their concept

and show how a small number of dark IP addresses can increase the efficiency of

network scanning detection. Furthermore, Jin et al. [48,49] are among the pioneers

to use IP gray space in passive monitoring. This work applies a heuristic algorithm to

identify IP gray space addresses. The authors investigate the behavior of such traffic.

This study tackles patterns such as dominant and random behaviors. The approach

identifies the usefulness of IP gray space to uncover insights on the behavior of

malicious activities as well as their intentions. The result identified several malicious

activities such as scanning, worm propagation as well as spam. Finally, in a unique

work, Jiang et al. [50] investigate passive monitoring in mobile communication. This

work presents a novel approach to detect SMS spammers on a cellular network. The

approach is based on greystar technology and employs a statistical model to infer

spam size through fingerprinting. The proposed approach also has the capability

to reduce the spam traffic by 75% during peak periods. The authors analyzed

five months of SMS data from large cellular networks and inferred thousands of

unreported spam activities.
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3.1.2 Deployment Techniques

In this section, we discuss the research works that mainly target the techniques of

deploying passive monitoring systems. Table 3.2 summarizes these contributions.

In this category, research works are mainly leveraging Intrusion Detection Systems

(IDS) and hybrid techniques.

Publications Approach/Technique Tool/Project

[51] IDS honeyd/DShield/DOMINO
[52] Sink - IDS iSink
[53] Sink - IDS honeyd/iSink
[54] Statistics - IDS Custom
[55] Mobile-Based AS Data honeyd/Mohonk
[56] Hybrid honeyd
[1] Hybrid IMS
[61] Hybrid Custom
[58] Comparative Study honeyd
[57] Hybrid IMS

Table 3.2: Deployment Techniques Research Papers - Summary

Yegneswaran et al. [51] introduce a scalable, heterogeneous, and robust Dis-

tributed Overlay for Monitoring InterNet Outbreaks (DOMINO). The proposed ap-

proach provides an architecture for collaboration of distributed IDS data on differ-

ent nodes on an overlay network. In an overlay design, a network is built on top

of another one. One of DOMINO’s components is the use of active nodes, which

measure connections targeting unused IP addresses. The authors emphasize the

importance of the approach in detecting sources of IP spoofing, classifying cyber

attacks, generating updated blacklists and reducing false positives. Moreover, Yeg-

neswaran et al. [52] introduce iSink and elaborate on a darknet case study to analyze

attack traces. The study is composed of various components such as the analysis

of backscatter packets and the investigation of unique periodic probes. iSink de-

ployment proved its relevancy in detecting worms such as Sasser. Through iSink,

the authors managed to observe different worm variants and malware. Furthermore,
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Yegneswaran et al. [53] explore ways to integrate trap-based monitoring informa-

tion, including darknet data, into daily network security monitoring with the goal

of sufficiently classifying and summarizing the data to provide ongoing situational

awareness. To this end, the authors develop a system based on honeynets, analyzers

that leverage Network-based Intrusion Detection System (NIDS), and a back-end

database to facilitate the analysis of honeynet data. The system is able to capture

and identify numerous malicious activities including botnet and worms.

Choi et al. [54] propose a framework to monitor and respond to security events.

The approach aims to trace potential attackers using darknet. The approach was

evaluated using a /24 darknet IP address block and other alert logs. Several attack

trends and patterns were identified. In addition, the approach showed capabilities

to detect zero-day attacks. Furthermore, Krishnamurthy et al. [55] propose a mobile

darknet-based mechanism that allows unwanted traffic to be detected significantly

closer to the origin source of attack. The scheme is based on two pieces of infor-

mation: the additional data that is made accessible to the upstream autonomous

systems (AS) and the changes in the advertised darknet. Such shared data among

ASes can identify and minimize unwanted traffic between these entities.

Bailey et al. [56] propose a hybrid monitoring architecture that uses low-

interaction honeypots (honeyd) as front-end filters and high-interaction honeypots

as a back-end for further investigation. In order to reduce loads on back-ends, a

filtering mechanism is used coupled with a novel hand-off mechanism. The authors

use five months of data to demonstrate the efficiency, scalability and robustness of

their work. In addition, Bailey et al. [1] discuss the major elements of darknet de-

ployment setup, namely, the storage and network requirements and the deployment

techniques. They further review the methods to collect darknet data and list the

most suitable formats. They propose three major darknet deployment approaches

to build darknet sensors. Moreover, Bailey et al. [57] examine the singular and
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distributed passive monitoring sensors to effectively build a scalable hybrid moni-

toring system. The authors demonstrated that the majority of the threats coming

to darknet were based on a limited number of source hosts, and proposed a new

source-distribution approach to reduce the number of events found while investigat-

ing darknet data. The analysis listed several threats including worms and scanning

activities.

Pouget et al. [58] provide a thorough comparison between honeypots based on

their level of interaction. Using honeyd as a low-interactive honeypot, this qualita-

tive and quantitative comparison uncover interesting classification and correlation

among detected threats. Finally, Komisarczuk et al. [61] discuss the opportuni-

ties and research directions in the Internet sensor grid for detecting and analyzing

malicious behaviors online. The authors review the developments of monitoring

sensors in active and passive modes. They further share their experiences in sensor

deployments.

3.1.3 Sensor Placement Techniques

This category includes techniques that are used to improve sensor placement and

setup. Table 3.3 lists the relevant research works.

Publications Approach/Technique Tool/Project

[62] Hybrid IMS
[63] Comparative Study honeyd/Leurre.com
[66] Multiscale Density Estimation iSink/DShield
[65] Comparative Study DShield
[64] Empirical Analysis Netflow
[67] Sampling Custom
[12] Comparative Study IMS

Table 3.3: Sensor Placement Research Papers - Summary

Several techniques have been used to improve darknet monitors placements.

For example, Cooke et al. [12] examine variations observed on different network
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blocks. The authors showed evidence that distributed address blocks exhibit signif-

icant changes in traffic patterns. They further demonstrated changes over protocols

(services) and specific worm signatures. Moreover, Bailey et al. [62] examine the

properties of individual and distributed darknet sensors to test the effectiveness

of deploying hybrid systems (darknet with honeypots). The authors used source-

based techniques to reduce redundant actions generated by individual darknet and

hence lowered the evaluated connections by over 90%. They also expanded source-

distribution based techniques to detect a variety of global attacks. Furthermore,

Chen et al. [63] demonstrate the importance of deploying multiple sensors in different

locations. The authors deployed two identical sensors, having the same configura-

tions, in two different locations and compared various parameters. While analyzing

data from a six-month period, the analysis revealed different anomalies. Likewise,

Berthier et al. [64] focus on the size and the location of darknet sensors to perform an

empirical analysis and increase the efficiency of darknet monitors. In addition, Abu

Rajab et al. [65] quantify the importance behind the design of a distributed monitor-

ing system and evaluate the applicability of this approach. In order to achieve their

goals, the authors propose a worm propagation model to evaluate the locations of

monitors, the size of the monitored IP addresses, and the impact of worm detection

time. Over 1.5 billion suspicious connection attempts were observed through many

detection systems across the Internet. The results showed that distributed moni-

toring systems were better than centralized ones. In terms of speed, a distributed

monitor system was found to act four times faster than a centralized one. Further-

more, the authors mentioned that monitor placement can be improved by having

partial knowledge of the vulnerable population density. In some cases, exploiting

information related to vulnerable host locations can help decrease the detection

time by seven times compared to random monitoring deployment. Furthermore,

Barford et al. [66] present a study of source locations of hosts that send unwanted

traffic through dark addresses. The researchers use a multi-scale density estimation
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method which allowed them to see a small number of tight clusters that are formed

by darknet source addresses. The authors propose a multiplicative model for darknet

host locations that can be used to generate data with the same distributed property

as empirical data. Their model can be used for testing, evaluating, measuring, sim-

ulating and analyzing traffic for the purpose of reducing darknet pollution. Finally,

Pemberton et al. [67] outline results from a /16 darknet network by experimenting

with various sampling techniques and applying them to arrival density measures.

The authors found that current darknet deployments using continuous lists of IP

addresses were inefficient in predicting threats. They further studied three other

address space allocation techniques and discovered better accuracy. The researchers

claim that business users as well as Internet Service Providers (ISPs) can use these

techniques to enhance darknet deployment in the future.

Publications Approach/Technique Contribution Tool/Project

[70] Marking Algorithm
Detecting Listening

Sensors Online
Custom

[71] Probe Response Attack
Proposing a Technique

to Detect Sensors
Custom

[69]
Automatic Profiling -
Random Sampling

Discussing Sensor
Identification and Configuration

Custom

[29]
Perspective-Aware
Address Discovery

Proposing a Model to
Uncover Darknet

Dark Oracle

[68] Sampling
Highlighting an Evasive Attack

that Identifies Sensors
DShield

Table 3.4: Sensor Identification Research Papers - Summary

3.1.4 Sensor Identification Techniques

This part includes research targeting the identification of darknet sensors. From the

adversary’s point of view, the identification of monitoring sensor locations allows

them to avoid detection. Table 3.4 summarizes these related works. Abu Rajab

et al. [68] highlight an evasive attack that detects passive monitoring systems such
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as darknet. By sampling the IP address space in a coordinated manner, the au-

thors show that detection and evasion of monitors is possible. Using this technique,

attackers can identify active hosts on the network and hence proceed with their

attacks. The proposed methodology can overtake the entire vulnerable population

within seconds. In a similar work, Sinha et al. [69] elaborate that monitoring sensor

configurations are easy for attackers to discover. The authors discuss that man-

ually building a monitoring system is usually a large and difficult task to handle.

Therefore, the authors propose an automated technique for sensor configuration.

They further argue that networks with consistent nodes and proportional repre-

sentation are more efficient in detecting attacks and more resistant to detection.

Using random sampling and profiling, the authors propose a technique for auto-

mated configuration of sensors. More on identifying monitors’ locations, Shinoda

et al. [70] propose several algorithms that are designed to detect listening sensors

on the Internet. Consequently, they propose an approach to enhance the sensor

setup and deployment. In a similar work, Bethencourt et al. [71] demonstrate the

use of probing to detect sensors’ locations on systems that publicly report security

results. This probe response technique, which can target darknet sensors, shows

how to locate monitors. With limited capabilities, the simulation results of this

technique illustrate the power of determining the sensors’ identity within one week.

The authors further target the anonymized schemes used by network administrators

and discuss some potential countermeasures based on the sensors’ characteristics.

Finally, Cooke et al. [29] propose the Dark Oracle, which is an architecture that

aims to uncover dark addresses. The authors validated the effectiveness of their

work, which uses internal as well as external routing and host setup information for

automatic discovery. The proposed methodology uncovered almost 80,000 unique

source IPs compared to 4,000 with a traditional /24 darknet. The authors further

demonstrated the capability of the Dark Oracle by shedding light on local attacks.
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3.1.5 Data Handling Techniques

Deploying darknet requires handling data, which includes processing, storing and

sharing its traffic. Darknet may receive a large amount of unsolicited network traffic.

Processing such information at the sensor level and sharing it with investigators and

researchers may therefore require several development steps. Table 3.5 summarizes

the data handling research papers.

Publications Approach/Technique Tool/Project

[72] Resource-Aware Multi-Format Data Storage IMS
[73] Graphical Processor Custom

Table 3.5: Data Handling Research Papers - Summary

In this category, Cooke et al. [72] propose a resource-aware multi-format data

storage of security information with the aim to simultaneously save various security

information. The proposed architecture consists of a set of algorithms for storing

various formats of data. Furthermore, a darknet-based prototype is built based on

numerous sources of data and the results show reasonable short- and long-term out-

puts. Moreover, Nottingham et al. [73] suggest graphical processors to accelerate

darknet big data analysis. They further discuss the construction, the performance

and the limitations of the packet filtering approach, which employs multi-match ca-

pabilities to differentiate between packets. The aim is to build a fully programmable

virtual machine with massive parallel classification, data mining and data transfor-

mation capabilities to provide complex security filtering, indexing and manipulation

functions.

3.1.6 Projects

The outcome of deploying darknet sensors is to build a functional platform, an

operational project or center to monitor the cyberspace. We list below the publicly
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Project Stewardship Description Objectives

UCSD
Network
Telescope

[76] CAIDA
Passive traffic monitoring
system built on a globally

routed /8 network

Monitoring of DDoS,
Internet worms,
viruses, scanning
and data sharing

ATLAS [14] Arbor
The world’s first and
largest globally scoped
threat analysis network

Providing global threat
intelligence for DDoS
and advanced threats

The Darknet
Project

[23]
Team
Cymru

Internet security
research and insight

Monitoring compromised
machines from malware

IMS [84]
University of
Michigan

A distributed global
Internet threat monitoring

system of /8 network

Measuring, characterizing,
and tracking threats

PREDICT [93] RTI

Protected repository
for the defense

of infrastructure against
cyber threats

Investigating spatial and
longitudinal darknet data

NICTER [78] NICT
A large-scale network

incident analysis system
Visualizing and analyzing

network attacks

WOMBAT &
Leurre.com

[79] EURECOM
Worldwide observatory of
malicious behavior and

attacks threat

Studying cyber
attacks and threats

Internet Storm
Center & DShield

[83] SANS

A global cooperative
cyber threat, Internet

security monitor,
and alert system

Monitoring the level
of malicious activity

on the Internet

Table 3.6: Large-Scale Darknet Projects - Summary

known centers and projects that use darknet as a source of their data. Table 3.6

summarizes large-scale darknet monitoring projects. Our classification is based on

three groups, namely, large-scale, small-scale and unclassified projects.

The first group in this area lists large-scale darknet projects. For instance,

the network telescopes project [76, 94] is a system proposed by researchers at the

Center for Applied Internet Data Analysis (CAIDA). The intent of this project is to

monitor pandemic and epidemic cyber incidents through the unused address space.

Moore et al. [75] propose the network telescope as an efficient and effective dark-

net traffic monitoring system by using sensors and virtual machines. The network

telescope project can monitor large chunks of unused address space. The Univer-

sity of California, a main contributor to this data, deploys network telescopes to
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monitor a single unused Internet address space of /8 block. The latter represents

around 1
256

th
of the overall IPv4 address space of the Internet. Collected data in-

cludes Domain Name System (DNS) data, topology traces, round-trip time, and

routing data. This passive information contains insights about large-scale security

events such as malware (mostly Internet worms) and DDoS. Another project is the

Active Threat Level Analysis System (ATLAS) [14], the Internet’s first globally

scoped threat analysis network. Under the direction of Arbor Networks, this net-

work monitoring system collectively analyzes the data traversing disparate darknet

to visualize malicious activities on the Internet. Arbor is among the unique opera-

tors positioned to provide enterprise and service provider-specific intelligence related

to malicious activities such as exploits, phishing, malware and botnet. In addition,

the Darknet Project [23] is deployed by the Team Cymru Community as a passive

Internet threat monitoring system. Its main purpose is to set a platform to collect

packets susceptible to be sent by malware. This darknet is deployed to host flow

collectors, backscatter detectors, packet sniffers and IDSs. Team Cymru aims to

increase awareness about threats and enhance mitigation against malware. In ad-

dition to monitoring darknet, the authors provide a guideline to set up a darknet.

Another large-scale project is the Internet Motion Sensor (IMS) [62], a distributed

globally scoped Internet threat monitoring system. The IMS project has the ability

to monitor dark IP space. It uses 28 unused IP blocks, ranging in size from /25 to

/8 network address blocks. The IMS is based on a distributed blackhole network

with a lightweight responder, a payload signature and a caching mechanism. These

capabilities are used to generate new insights about worms, DDoS, and scan activ-

ities [84]. Furthermore, the Protected Repository for the Defense of Infrastructure

against Cyber Threats (PREDICT) project [93] investigates spatial and longitudi-

nal darknet data. The authors aim to describe some of the large-scale spatial and

longitudinal darknet information. Another large-scale project is the Network In-

cident analysis Center for Tactical Emergency Response (NICTER) [77, 78], which
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is a large-scale network incident analysis system that mainly monitors darknet. It

represents a system that is capable of capturing and analyzing malware executable.

The identification of malware propagation is the primary purpose of this project.

The NICTER project is composed of four components: macro analysis system, micro

analysis system, network and malware enchaining system, and the incident handling

system. Additionally, the Worldwide Observatory on Malicious Behavior and Attack

Threats (WOMBAT) [59, 74] center aims at providing new artifacts to understand

emerging threats. The project WOMBAT is used to collect raw data and analyze it

in order to identify different threat phenomena. The authors claim that the latter

can discover trends of attacks by understanding the behavior of threats. With this

in mind, the designers develops mechanisms for automatically collecting and ana-

lyzing malware [95]. WOMBAT has a number of features. Its main feature is to

improve data acquisition technologies. The project further shares information with

its partners, including SGNET [96], Leurre.com [79], Argos [97], Nepenthes [98],

NoAH project [87], and SANS Internet Storm Center (ISC) [83, 99] which uses the

DShield as firewall [100]. Moreover, The Leurre.com Project [60, 80], a part of the

WOMBAT project, has a purpose of collecting Internet threats using worldwide

distributed sensors [79]. The terms used in the context of this project include plat-

form architecture, logs collection, data uploading mechanism and data enrichment

mechanism. Furthermore, the Billy Goat project [81] is a specialized darknet traf-

fic monitoring system deployed by IBM and its customer networks. It is used for

worm detection. This project differs from other monitoring systems as it focuses

on specific attacks and dynamic characteristics of worms. By taking advantage of

worm propagation strategies, Billy Goat monitors unused IP address spaces that

are randomly scanned by worms. Finally, the Honeynet project [82] is a dedicated

system to investigate cyber attacks and develop open source security techniques to

mitigate Internet threats. This project provides tools to build darknet sensors.
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The second group in this category are small-scale projects. For example, An-

tonatos et al. [88] propose HoneyHome, a part of the NoAH project [87], a platform

for monitoring unused IP addresses and ports for large-scale security events extrac-

tion. This low-cost system is based on installing sensors on regular users to monitor

these unused IP addresses and ports. Since regular users come and go, it is difficult

for attackers to detect these unstable sensors. Moreover, ARAKIS [86], one of the

initial data sources for WOMBAT, is developed by NASK and operated by CERT

Polska. The latter project is a nationwide near real-time NIDS that generates early

notifications and warnings about security events. The system consists of a central

database in addition to distributed monitors, which collect and correlate security

information through low-interaction honeypots and other detection systems includ-

ing darknet. Finally, Daedalus [101], which is based on the NICTER project, is

designed to capture cyber attacks in near real time fashion.

Last but not least, it is worthy to mention some other unclassified projects

that use passive monitoring such as SWITCH [89], the National Police Agency of

Japan [90], the Internet Scan Data Acquisition System (ISDAS) runs by Japan

CERT Coordination Center [91], the Research and Education Networking Infor-

mation Sharing and Analysis Center (REN-ISAC) [102], the IUCC/IDC Internet

Telescope [92] in Israel, the Simwood Darknet [103] and many other academic sys-

tems such as the Darknet Mesh Project [104] at Oxford University as well as Rhodes

University Network Telescope [105].

3.1.7 Summary

We have discussed several key elements in the darknet deployment section, namely,

architecture, darknet variants, online placement and identification of sensors, data

handling, and projects. From what has been discussed in the deployment part of

Section 3.1, we can conclude the following points:
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• In order to deploy darknet, several elements must be taken into consideration,

such as the study of exact storage and network requirements, the knowledge

of deployment techniques, as well as sensor placement and identification.

• Compared with other trap-based monitoring systems, darknet is considered as

a practical and easy-to-implement tool in passive monitoring the cyber space.

Darknet setup can be developed using basic routing techniques and monitored

through IDSs.

• IDSs are the most used systems in darknet development and Honeyd is prob-

ably the most practical tool to implement darknet sensors.

• One of the major challenges in deploying darknet is to avoid the adversary’s

discovery of the sensor location. Several techniques are used to identify the

location of sensors such as the sampling of IP addresses.

• Mobile darknet is a new trend that has a promising future in passive monitor-

ing research. The future deployment will include mobile-based VoIP darknet.

• Darknet variants are not commonly used in literature. These variants can be

more efficient than darknet to monitor cyber attacks; however, their imple-

mentation could be more complex.

• Darknet projects monitor various cyber threat activities and are distributed

in one third of the global Internet.

• Various types of darknet projects exist. Some large-scale projects are coupled

with interactive trap-based monitors to enhance network monitoring.

• CAIDA is one of the few Internet monitoring research groups, which provides

darknet-based backscatter data for researchers.

• Despite the existence of some collaborative darknet projects (i.e., PREDICT),

more darknet resources and information sharing must emerge to infer and
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attribute large-scale cyber activities. Dealing with a worldwide darknet infor-

mation exchange is a capability that requires collaboration and trust; however,

this collaboration raises security policies and privacy concerns.

In the next section, we provide a taxonomy of darknet data analysis.

3.2 Darknet Analysis

This section provides an overview of the contributions in the area of darknet data

analysis and measurement. These topics are divided into three main areas: analyzing

and measuring darknet data, threats, and worldwide events. Figure 3.5 depicts the

taxonomy of research efforts in the analysis and measurement of passive monitoring

systems.

3.2.1 Data Analysis

In this section, we provide a taxonomy of the research works related to darknet data.

This includes profiling darknet traffic, filtering and classification of its data as well

as reviewing its backscatter and misconfiguration traffic.

Data Profiling

Data Profiling encompasses the research works that focus on the characterization

of darknet data to generate statistics and insights. Table 3.7 provides an overview

of the summarized research works. These contributions leverage several techniques

such as packet filtering, routing, and time series.

For instance, Irwin [106] explores data across five different darknet sensors.

The author discusses the differences as well as the similarities among the analy-

sis of the five sensors and presents two case studies related to two vulnerabilities
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Figure 3.5: Analysis Research Taxonomy - Overview

on Microsoft Windows systems. Furthermore, Pang et al. [108] present a study of

the broad characteristics of darknet. The authors develop filtering techniques and

active responders to use in their monitoring process. They analyze both the charac-

teristics of completely unsolicited traffic (passive analysis) and the details of traffic

elicited by their active responses (activities analysis). Moreover, Shimoda et al. [109]

propose a system to improve passive darknet monitoring. The proposed approach

leverages active hosts with no effect on legitimate connections. This light-weight

multi-dimensional IP/port analysis system enables TCP ports monitoring. In this

context, Ford et al. [107] create the first IPv6 darknet. The aim of this work is to
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Publications Approach/Technique Contribution Tool/Project

[106]
Comparative Study -

Packet Filtering

Exploring Data
Across Five

Different Darknet Sensors
TENET

[108]
Packet Filtering -

Routing
Characterizing
Darknet Data

iSink

[107]
IPv6 Packet Analysis -

Routing
Creating the First
IPv6 Darknet

Custom

[109]
Multi-Dimensional
IP/Port Analysis

Proposing a System to
Improve Darknet Monitoring

Custom

[111,112]
Time Series -

Principle Component Analysis

Discussing the Temporal
and Spatial

Correlations in Data
Custom

[110] Packet Filtering
Inferring the Evolution
of Internet Infrastructure

CAIDA

[2]
Time Series -

Spatial Analysis
Discussing Topics
Related to Darknet

Custom

[113] DNS Analysis
Introducing the Concept

of Dark DNS
honeydns

[114]
IPv6 Packet Analysis -

Routing
Studying IPv6
Darknet Data

Custom

[200,201] Time Series
Studying Different
Entropy Metrics

Custom -
CAIDA

Table 3.7: Profiling Research Papers - Summary

compare between IPv6 and IPv4 darknet. The results showed that traffic targeting

IPv6 darknet is minimal. Furthermore, Dainotti et al. [110] infer the evolution of

Internet infrastructure. Instead of using active probing techniques, this technique

leverages darknet traffic monitoring to provide some insights on the utilization of

the Internet. The investigation touches the limited visibility of a unique observation

point as well as the existence of IP spoofed addresses in data that can fake anal-

ysis results. The authors propose new techniques to remove spoofed packets and

compare their results with methods that use active scans. Oberheide et al. [113]

introduce the concept of dark DNS, which is based on the analysis of DNS queries

found on darknet addresses. They also profile the DNS dark data collected from their

sensor and discuss the implications of evading sensor through DNS reconnaissance.

They further stress on the defense aspect using proactive measures when deploying

darknet sensors through delegating reverse DNS authority in a proper manner. At
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the end, they introduce honeydns, which complements low-interactive and darknet

sensors by providing DNS trap services. Finally, Czyz et al. [114] report a large

study of IPv6 darknet data. Through the analysis of five large /12 network address

space, the authors highlight the nature of the traffic and compare it with IPv4 data.

The researchers also provide various case studies to show notable properties while

analyzing darknet IPv4 and IPv6 data.

Furthermore, time series analysis techniques are also used to profile passive

monitoring data. For example, Fukuda et al. [111] discuss the temporal and spatial

correlations among piecewise unwanted traffic. The aim of their techniques is to

determine whether they can estimate statistical properties of global unwanted traf-

fic behavior from smaller darknet address blocks. They found that the fluctuation

of darknet traffic was close to random compared to normal traffic. Moreover, the

authors demonstrated that the TCP SYN traffic time series had a strong spatial cor-

relation. On the contrary, for TCP SYNACK and UDP traffic time series, Fukuda

et al. [112] confirmed that in this case they were less correlated. The authors stress

the need for a more sophisticated classification of the UDP unwanted traffic. They

further investigated the macroscopic behavior of unwanted traffic collected using a

/18 darknet over one year period. In order to measure the complexity in network

traffic, Riihijarvi et al. [200] study different entropy metrics. The generated metrics

provide a better understanding of the traffic and help finding a new way to charac-

terize the data. Moreover, the proposed technique uncovered structures on different

traffic measurements and timescales. These authors extend their work to propose

the use of multi-scale entropy analysis to characterize network traffic and spectrum

usage. They showed that this technique can quantify complexity and predictability

of analyzed traffic in widely various timescales. The results further showed that

different entropy structures exist for different traffic traces such as time series and

commonly-used traffic [201]. Last but not least, Wustrow et al. [2] discuss topics

related to darknet. They pinpointed the rapid growth of Internet pollution that
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was out spacing the growth of productive network traffic. Furthermore, they no-

ticed trends toward increasing SYN and decreasing SYN-ACK traffic. In addition,

they examine several case studies in Internet address pollution and offer specific

suggestions for filtering them.

Data Filtering & Classification

Data filtering and classification include the classification and filtering approaches of

darknet data. These techniques are summarized in Table 3.8.

Publications Approach/Technique Contribution Tool/Project

[116] Relative Uncertainty Theory Filtering Darknet Data Custom
[115] Classification Scheme Composition of Darknet Data Custom

[117] Hybrid
Manual Identification and

Automated Generation of Data
Custom

Table 3.8: Filtering & Classification Research Papers - Summary

Glatz et al. [115], for instance, analyzed a dataset that captured a significant

amount of traffic to shed light on the composition of darknet towards large networks.

The approach is based on a one-way traffic classifier. The authors found that such

traffic constitutes the majority of all traffic in terms of flow and can be primarily

attributed to malicious causes; however, it has declined since 2004 due to the rela-

tive decrease of scan traffic. Moreover, Wang et al. [116] propose a novel approach

to filter darknet traffic. Their technique is based on relative uncertainty theory and

is independent of configurations or building databases. The authors assume that

data coming from regular users is relatively certain and not random. Furthermore,

Cowie and Irwin [117] discuss the difficulties in generating training traffic for Ar-

tificial Intelligence (AI) analysis. The authors mention the problem in accurately

labeling known incidents from darknet. Other factors related to this issue include

the originality of data and the time involved. To address this problem, they work

on two techniques, namely manual identification and automated generation. The

first counts on heuristics for finding network incidents whereas the second considers
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building simulated data sets. They were able to construct a sample of an AI system

out of this marked dataset.

Backscatter Data

Backscatter data is the reply packets sent to the darknet. Several factors can pro-

duce such scenario, such as DDoS victims replying to spoofed IP addresses and

misconfiguration. Table 3.9 summarizes the works that leverage backscattered traf-

fic to generate cyber insights. Under this category, the research contributions employ

several techniques such as mathematical models, network routing, packet filtering,

and visualization.

Publications Approach/Technique Contribution Tool/Project

[125] TCP Delay Detecting Network Congestion CAIDA

[121,122]
Matching Pursuit
(MP) Algorithm

Detecting Malicious Traffic CAIDA

[118] Bloom Filter
Enhancing Counting Bloom

Filter’s Hash Space
RSECBF - CAIDA

[120] Distributed Stubs Detecting Anomalies DTRAB - CAIDA

[119] Entropy-Based
Studying Entropy-based

Anomaly Detection
CAIDA

[124] Multi Connections Detecting Anomalies MCAD - CAIDA
[123] Clustering Extracting Traffic Signatures PISA

Table 3.9: Backscatter Research Papers - Summary

For instance, Peng et al. [118] propose a Reconstruction based on Semantically

Enhanced Counting Bloom Filter (RSECBF) algorithm to reveal the distribution of

the main elements from semantically enhanced Counting Bloom Filter’s hash space.

The proposed algorithm deploys a specific technique, which directly selects certain

bits from the primary string. The authors confirm the homogeneous hash strings and

show the efficiency of the algorithm using real backscatter traces. Moreover, Rah-

mani et al. [119] study entropy-based anomaly detection through backscatter from

darknet data. In particular, the authors try to understand the detection strength of
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using joint entropy analysis of many data distributions. The authors found statisti-

cal correlation between time series of IP flow number and collective traffic size. The

approach was tested on backscattered data and led to more effective and accurate

DDoS detection techniques. Moreover, Choras and Saganowski [121, 122] leverage

backscatter data to propose an anomaly detection technique for recognizing mali-

cious traffic. Using the correlation of parameters from different layers, the authors

were able to detect unknown attacks with a low amount of false positives. The

authors correlated signal-based and statistical features to enhance their technique.

The proposed framework uses, for the first time, the Matching Pursuit (MP) algo-

rithm [202] on network traffic. They found superior results to other IDSs that work

on discrete wavelet transform. Similarly, Fadlullah et al. [120] detected anomalies

through strategically distributed Monitoring Stubs (MSs). This work was able to

categorize encrypted protocols. The MSs are designed to extract features and build

normal behaviors. Based on deviations in traffic, the technique can differentiate be-

tween suspicious and benign traffic. After the detection process, MSs notify victims

to trace-back the source of the attack and take necessary action.

He and Parameswaran [124] leverage backscatter data to propose a novel

anomaly detection system based on multiple connections. The approach is consid-

ered faster than previous anomaly detection mechanisms. This Multiple Connection

based Anomaly Detection (MCAD) system relies on the concept that attackers use

similar connections to execute an attack. Hence, the algorithm tests for similarities

within connections, and if the value is above a certain threshold, the connections

are flagged as malicious. Over one million connections of backscatter traffic were

tested in this work. MCAD was able to identify fifteen forms of connections, in

which fourteen were fully detected while only one was detected with 66% accuracy.

In addition, in order to detect congestion online, the authors in [125] propose a

mechanism to detect congestion in network traffic by analyzing passive and aggre-

gation links. The technique is based on delays in TCP data. The approach was
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tested on backscatter data and proved to be efficient. This technique is consid-

ered dynamic with fast detection capability. In an attempt to fingerprint malicious

attacks, Chhabra et al. [123] propose PISA, a packet imprint in security attacks

algorithm, for automatic extraction of traffic signatures. PISA has the capability

to cluster flows based on similarity in packet information and generate signatures

from clusters. This tool was tested on two weeks of backscatter data encompassing

100 million packets. The results inferred about 1744 signatures related to several

malware including the Blaster worm.

Data Misconfiguration

Data misconfiguration is the act of incorrectly setting up a machine on a certain

network. This section lists research works that leverage darknet to infer misconfig-

uration, errors and data management in network communications. Relevant contri-

butions are shown in Table 3.10.

Publications Approach/Technique Contribution Tool/Project

[126] Probing - Routing Reachability Analysis Arbor Networks

[127] Packet Filtering - Routing
Studying Trends of

Network Misconfiguration
CAIDA

Table 3.10: Misconfiguration Research Papers - Summary

For instance, Francois et al. [127] demonstrate that darknet is a powerful

tool in analyzing malicious network activities as well as network management. The

authors present trends of network misconfiguration using darknet analysis. In prac-

tice, the results illustrated that deployed networks suffer from well-known errors and

faulty configuration. Furthermore, Labovitz et al. [126] present a large study on the

one-sided differences in Internet service provider reachability. The authors focus

on darknet and the range of topology reachable to some providers but unreachable

through one or more competitor networks. They present both active and passive

measurements of differences between service providers’ reachability. The goal is to
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discover the level to which commercial strategies, peering disputes, network failures,

misconfiguration, and various malicious acts can lead to a partitioning of Internet

topology. The results showed that the Internet was indeed partitioned and that

darknet existed in a large amount (5% of Internet addresses). Moreover, the au-

thors found that some prefixes were reachable only to specific providers. In addition,

70% of hosts responded to reachability tests and the majority of these devices were

cable/ISDN pools and US military hosts.

3.2.2 Threat Analysis

One of the major elements in passive network monitoring is the extraction of in-

sights on suspicious activities and threats on the Internet. Recall Figure 3.5, this

section includes the research contributions in the following areas: threat profiling,

anomalies, threats’ variants and malicious activities.

Threat Profiling

Threat profiling includes the characterization (profiling) of darknet threats. Table

3.11 lists the threat profiling papers. Several techniques are used to profile darknet

threats such as time series, statistics, and network routing.

Various researchers utilize time series and statistical methods to profile dark-

net threats. For instance, Harder et al. [128] study the statistical properties of class

C darknet addresses for over three months. The authors found that the majority

of the traffic is based on few IP sources and destination addresses. The study in-

cluded a demonstration using many visualization techniques to represent darknet

data and showed severe attacks such as DDoS and scanning activities. Using differ-

ent techniques, such as power spectrum, inter-arrival time of packets and detrended

49



Publications Approach/Technique Contribution Tool/Project

[43] Broad-Spectrum
First to Investigate

Trap-based
Monitoring Systems

Custom

[59] Packet Filtering
Representing the
Infrastructure of
Data Gathering

honeyd/WOMBAT

[128]
Time Series -
Statistics -

Power Spectrum

Studying the Statistical
Properties of Darknet

Custom

[129] Statistics
Presenting the

Leurre.com Project
Leurre.com

[130]
Graph-based -

Statistics
Proposing a Distributed

Monitoring System
Custom

[131] Time Series Predicting Anomalies DCMA

[132]
Change-Point -
Data Mining

Analyzing Suspicious
Behaviors

NICTER

[133]
Comparative Study
and Correlation

Studying the Selection
of Sources of Information

CAIDA
ATLAS
SANS
DShield

Table 3.11: Threat Profiling Research Papers - Summary

fluctuation analysis of this data, the authors found small signs of long-range depen-

dency within the analyzed traffic. Francois et al. [130] leverage statistical techniques

to propose a distributed system that monitors threats using centrality of a graph

and its time evolution. Furthermore, Holz [129] presents the leurre.com project and

discusses the importance of collecting data from different locations and generating

results based on correlation engines. The author highlights insights in terms of find-

ing attack patterns and pinpointing root-causes of threats. Ohta et al. [131] uses

time series analysis to study the possibility of predicting anomalous packets’ behav-

iors by observing a small darknet address space. The researchers propose distributed

cooperative monitoring architecture (DCMA) technique, which aims to probe and

detect anomalous packets. The authors calculate the correlation strength of anoma-

lous packets, observe the correlation strength when changing the sub-observation’s

size, and note the dependency of the correlation strength.
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We further list contributions that utilize hybrid and custom techniques to

characterize darknet threats. For example, Bellovin et al. [43] are among the first to

investigate trap programs that search for attacks. Their work can also be the pri-

mary motivation that triggered the idea of darknet monitoring. A variety of pokes

were found during their analysis. The authors believe that these attacks occured on

many online sites without the administrators’ knowledge. In this work, they also

provide important security information to security operators on how the attackers

were operating [9]. In addition, Inoue et al. [132] utilize NICTER to propose a novel

method to analyze suspicious behaviors. The latter technique is based on the mal-

ware’s external behavior. Their experiment is executed in a safe environment using

virtual machines. Moreover, Dacier et al. [59] leverage WOMBAT to represent the

infrastructure of data gathering. This project is based on an extended version of

honeyd with SGNET [203]. In this experiment, the authors were able to observe

the evolution an army of zombies. Their approach is found to be efficient to use for

multidimensional analysis of events. The authors also shared some insights found

when collecting malware (including zero-day) and described different stages of at-

tacks. Finally, Berthier et al. [133] present a large and comparative study to help

security operators in selecting sources of information. By comparing three different

sources of security information including darknet dataset, the authors correlated

attacks among different sources of data having various granularity.

Anomalies

Anomalies are defined by the acts of deviation from the normal network traffic pat-

tern. This section provides a summary of the darknet-based research that targets

the detection and mitigation of anomalies. Table 3.12 denotes these research pub-

lications. The major techniques are based on IDS, mining, clustering, and time

series.
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Publications Approach/Technique Contribution Tool/Project

[137] Packet Filtering - Routing - Data
Mining

Proposing a Novel Application of
Large-scale Monitoring

Nicter

[75] Time Series - Mathematical
Model

Monitoring Large-scale Security
Threats

CAIDA

[147] Opportunistic Measures Uncovering Hidden Regions of the
Internet

Custom

[148] Automated Knowledge Discovery Introducing Cliques
Cliques

Leurre.com
[134] Generic IDS - Firewall Presenting an Empirical Analysis

of Internet Intrusion
Custom

[47] Time Series - Discrete Wavelet
Transform

Observing Unknown Malicious
Activities

Custom

[145] Cardinality Variation Analysing and Detecting Cyber
Attacks

Custom

[146] Poisson Statistical Process Detecting Malware IMS

[138] Knowledge Discovery - Data Min-
ing

Studying New Emerging Attack
Phenomena

Honeyd
Leurre.com

[141] Context-Aware Detecting and Mitigating Online
Threats

Custom

[142] IDS - Association Rule Mining Characterizing Data and Investi-
gating Threats

Custom

[143,144] Time Series - Sliding Window Cu-
mulative Sum - Change Point

Automatic Recognizing Varia-
tions in Network Traffic

Custom

[139] Time Series - Pattern Recognition
- Clustering

Analyzing Attack Patterns
Honeyd

leurre.com

[140] Knowledge Discovery - Fuzzy De-
cision Making

Proposing and New Technique for
Attack Attribution

Honeyd
leurre.com

[135] IDS - Hidden Markov Describing an Adaptive NIDS
with a Two-stage Architecture

Custom

[149] Messaging Framework Proposing a Framework for Real-
time Analysis

Custom

[150] Selective Pulling - Ratio-Based
Algorithm

Proposing a System for Timely
Business Intelligence and Deci-
sion Making

RTQ

[136] IDS - Statistics Exploring New Techniques to
Leverage Darknet Monitoring

Honeyd

[151] Hotspots Defining Hotspots for Malware
Detection

IMC

Table 3.12: Anomalies Detection and Mitigation Research Papers - Summary

First, several researchers leverage IDS systems to detect anomalies. For in-

stance, Yegneswaran et al. [134] present a broad, empirical analysis of Internet intru-

sion activity using a large set of Network-based IDS, firewall logs and darknet data.
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Their breakdown of scan types showed not only a large amount of worm propaga-

tion but also a substantial amount of scanning activities. To gain insights into the

global nature of intrusions, the authors use their data to project the activity across

the Internet. They also present a theoretic evaluation on the potential of using data

shared between networks as a foundation for a distributed intrusion detection infras-

tructure. Furthermore, Karthick et al. [135] use probability to describe an adaptive

network-based IDS with a two-stage architecture. The first stage includes a proba-

bilistic classifier whereas the second uses a Hidden Markov Model to narrow down

the attack source IPs. The proposed hybrid model was tested and showed good

performance in detecting intrusions. For the purpose of providing situational aware-

ness, Barford et al. [136] explore techniques that can be used to integrate trap-based

monitoring data into daily monitoring systems. These techniques are based on IDS

system and other statistical methods. The authors also discuss techniques that can

detect whether an attack is purposely or incidentally targeting a victim as part of a

larger attack. The analysis showed prevalence of different scanning techniques and

useful information on trends, uniformity, coordination, and darknet-avoidance.

Second, several authors utilize mining and clustering techniques to learn about

anomalies. For example, Inoue et al. [137] leverage resources from Nicter to propose

a novel application of large-scale darknet monitoring in live networks. The technique

investigates packets transmitted from inside networks instead of outside. In addi-

tion, Thonnard and Dacier [138] aim to generate insights on the method of operation

of new emerging attack phenomena. To accomplish this goal, they have presented

a multi-dimensional knowledge discovery and data (KDD) mining method. This

technique extracts meaningful nuggets of knowledge and synthesizes those pieces

of knowledge at different dimensional levels to create a concept that can best de-

scribe real-world phenomena. Furthermore, Thonnard et al. [139] present an analysis

framework for discovering groups of attack traces having similar patterns. The au-

thors extract knowledge of darknet data by discovering attack patterns via attack
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trace similarity, rather than a rigid signature. The results of their clustering method

enabled the identification of activities of several worms and botnet in the collected

traffic. In a similar work [140], the authors introduce a general analysis method

to address the complex problem related to attack attribution. Their approach is

based on a mixture of knowledge discovery and a fuzzy decision making process.

By applying their technique on darknet attack traces, the researchers showed how

to attribute and identify large-scale orchestrated cyber campaigns. Finally, in our

work [142], we have characterized darknet data and investigated darknet threats.

The aim is to study threats that are found on darknet and prioritize their severities.

We further explored the inter-correlation of these threats by conducting association

rule mining studies to generate association rules. Our technique extracts clusters of

co-occurring malicious activities targeting certain victims. This contribution proved

that some threats found on darknet are correlated. Furthermore, our technique pro-

vided intelligence about patterns within threats and allowed the interpretation of

attack scenarios.

Third, the following group of authors uses time series techniques. Limthong

et al. [47] applied Discrete Wavelet Transform (DWT) techniques for traffic signal

decomposition and observed unknown malicious acts from darknet information. In

particular, the authors focus on TCP SYNs, TCP SYN/ACKs and UDP packets

based on three time intervals. The purpose of this work is to show the importance

of time series wavelet methods in finding insights about malicious communications

on darknet. In addition, Ahmed et al. [143,144] leverage time series techniques and

the dynamic sliding window cumulative sum (CUSUM) algorithm to automatically

recognize nested changes in network traffic and detect any number of these changes.

This automatic detection approach can identify both the beginning and the end of

abnormal changes.

Finally, several hybrid and custom techniques are used to detect and mitigate
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anomalies. For example, Chen et al. [145] focus on the analysis and inference of cy-

ber attacks through a technique based on the changes in the cardinality of the attack

traces. The approach develops a nonparametric error-bound scheme with the capa-

bility to detect cyber attacks through a centralized data center of multi-monitoring

sensors. This scheme uses small space and constant processing time, which allow

the system to operate in near real time. In addition, a statistical approach is used

by Soltani et al. [146] to detect malware on darknet traffic. The authors introduce

the Piecewise Poisson process Model (PPM) and check the rate of traffic to detect

malware outbreaks. The researchers then implement a regression model that can be

used to characterize changes in the PPM data rates. In addition, Moore et al. [75]

leverage the analysis of darknet traffic to monitor large-scale security threats. They

showed a trend in cyber attacks based on a period of over two years. Moreover, these

authors study the relation between the detection ability and size of these sensors,

profile precision in detecting duration and rate of an attack, and discuss good prac-

tices in darknet deployment. Furthermore, Casado et al. [147] propose opportunistic

measures from spurious network traffic (such as darknet) to uncover hidden regions

of the Internet. The authors identify such sources and demonstrate their possible use

in providing efficient statistical data. In addition, Pouget et al. [148] introduce an

automated knowledge discovery technique called Cliques. The Cliques methodology

provides insights on how attacks occur and potentially identifies the source behind

them. The authors used the proposed methodology and found useful data about

similarities in the method of operation of many potentially unrelated malicious tools.

In addition, Hunter et al. [149] propose a framework for real-time analysis of darknet

and honeypot data. The technique uncovers several malicious behaviors. In order

to collect data, the authors develop an automated reconnaissance (AR) framework

that works in both passive and active modes. The authors utilize several features

to identify malicious users such as OS name, targeted service, location and services

operating on the adversary. Gupta et al. [150] propose a ratio threshold queries
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(RTQs) system that can be used for timely business intelligence and near real time

decision making. For instance, the system can defend against malicious attacks on

the Internet such as DDoS when the ratio of queries surpasses a certain threshold.

The system further uses selective pulling techniques for inferring extra sources. In

addition, Sinha et al. [141] investigate techniques in detecting and mitigating online

threats via the context available in network, environment and host. The authors

explain the context concept which is based on three main properties: vulnerability

profile, attack surface, and usage model. The authors leverage ten years of experi-

ence to prove the efficiency of the approach in enhancing security techniques. Last

but not least, Cooke et al. [151] define hotspots as the root cause of non-uniformity

in self-propagating malware. In this work, the authors claim that two main factors

are behind its existence, namely, the algorithmic and environmental factors. Using

eleven sensors located at different addresses around the Internet, they measured the

impact of these factors on the propagation of worms and bots (or zombies). Based

on this idea, the authors simulated the outbreak of new threats with hotspots and

demonstrated the effect of the aforementioned factors on the visibility of monitors

and hence the efficiency of detecting new threats.

Threats Variants

Threats variants include various threats. We list in this section the threats that can

be detected through the analysis of darknet data, namely, DDoS, worms, botnets

and DRDoS.

Distributed Denial of Service attack is one of the most severe cyber

threats. Denial of Service (DoS) attacks are characterized by an explicit attempt to

prevent the legitimate use of a service. Table 3.13 summarizes darknet-based DDoS

research papers. Below is an overview of these studies. Some techniques include

mathematical models, network routing and packet filtering.
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Publications Approach/Technique Contribution Tool/Project

[204,205] Chi-Square Statistics Detection CAIDA
[152] Identifier/Location Separation Prevention Custom
[206] Greedy Algorithm Detection Custom
[150] Greedy Algorithm Detection Custom

[153] Stream-Based Processing
Prevention and

Mitigation
STONE

[154]
Adaptive and Hybrid

Neuro-fuzzy
Detection NFBoost

[155,156]
Traffic Analysis -

MIB
Detection and
Mitigation

D2M2

[157,157]
Flow-Based Algorithm -

Data Mining -
Time Series

Prediction Custom

[159] Data Correlation
Detection and
Mitigation

OADS

[160]
Total Variation

Distance
Detection Custom

[161]
Flow-level -

Reputation-Based
Prevention and

Mitigation
TrustGuard

[162] Change Point Detection Custom

Table 3.13: DDoS Research Papers - Summary

First, the following publications leverage mathematical and statistical models

for generating DDoS insights through darknet analysis. For instance, Andrysiak

et al. [206] focus on detecting DDoS threats using greedy algorithms. More specifi-

cally, the approach uses Matching Pursuit algorithms, which look into best matching

projections of multidimensional dataset. Similarly, Gupta et al. [150] focus on the

analysis of backscatter and MAWI data [207] to detect DDoS by means of greedy

algorithms. The approach is based on several matching pursuit algorithms. In

addition, Arun et al. [154] propose NFBoost, an adaptive and hybrid neuro-fuzzy

approach to detect DDoS attacks. The approach combines various classifier outputs

and cost strategy minimization technique for classification determination. The ap-

proach was tested on real DDoS traces and trained with publicly available dataset.
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Furthermore, the evaluation was based on two metrics, namely the detection ac-

curacy and cost. In our work [157, 158], we have propose an approach to predict,

within minutes, certain DDoS and their attacks features; namely, intensity/rate and

size. The aim is to forecast the future short term trend of DDoS attacks. The

analysis is based on darknet data and the attack traces are tested for predictability

using a time series approach prior to predicting. In addition, Rahmani et al. [160]

propose a two-stage DDoS detection approach based on the breaks in the connec-

tion size distribution. To achieve this goal, the authors employ a total variation

distance technique to calculate the horizontal and vertical similarity between flows.

The approach detects high- and low-rate DDoS attacks. Furthermore, Abouzakhar

et al. [204] present a network-based system for anomaly detection using chi-square

statistics. This technique is a robust multivariate anomaly detection method with

minimum computation cost. The objective of this method is to reduce the limitation

of intrusion detection and network forensics. In an extended work [205], the same

authors developed patterns for intrusion detection based on data mining techniques

and Fuzzy algorithm. This Association Rule Mining-based (ARM-based) detection

technique was successfully tested on real DDoS data. They further presented an en-

hanced Fuzzy ARM matrix for mining and associating rules. This hybrid approach

can improve the efficiency of anomaly detection.

Second, other group of researchers tackle IP filtering and network routing

techniques to investigate DDoS. For instance, Luo et al. [152] apply the identi-

fier/location separation technique, a mechanism to solve the issue of routing scala-

bility on the Internet to prevent distributed DDoS attacks. The proposed approach

hardens the security to control machines (i.e., controlling infected machines through

a botnet). This approach was evaluated using real DDoS traffic and showed promis-

ing results. Furthermore, a change point technique coupled with an analysis of

source IP addresses are used by Ahmed et al. [162] to detect high-rate flooding at-

tacks. The authors use a proof of concept development of the proposed methodology
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and show the efficient representation of pre-onset IP addresses that can also be used

for threat mitigation.

Finally, other DDoS detection and mitigation techniques are used such as Chen

et al. [153] who introduce STONE, a stream-based framework designed to defend

against DDoS attacks. The STONE is a hybrid and scalable system that leverages

anomaly-based inference and mitigation. The system operates through continuous

data streaming queries to maintain data processing. The approach is also useful

in the case of flash (high speed) events and operates in a priority-based fashion.

STONE is built on top of StreamCloud, which is an elastic parallel-distributed

stream processing engine. Additionally, Bhatia et al. [155, 156] propose a model

to detect and mitigate DDoS attacks. The model uses an MIB (Management In-

formation Base) server load and network traffic analysis to detect DDoS attacks

from various network layers. The proposed model has the capability to distinguish

DDoS from flash events. Further on DDoS, Feitosa et al. [159] also propose an

approach to detect and mitigate DDoS attacks. They present the specification of

a new orchestration-based technique to infer and mitigate threats. The proposed

approach is based on a framework that coordinates alerts and events, infers threats,

and consequently chooses the ultimate action. The authors generate rules and infer

attacks with a greater degree of certainty than simple anomaly detectors. Finally,

Liu et al. [161] examine drawbacks of existing DDoS defense schemes and propose

a credit-based defense system. This approach focuses on the diversity in size of the

attack; the less diverse the attack flow, the smaller credit it gets. The DDoS attacks

were found to accumulate less credit as they naturally have low diversity in their

traffic. This mechanism was able to identify the characteristics of micro and macro

DDoS attackers and victims.

Worms are malicious codes known to infect and propagate in a rapid manner.

We list in this section the contributions related to computer worms via darknet data
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Publications Approach/Technique Tool/Project Worm

[163] Packet Filtering - Routing CAIDA Code Red
[44,164] Packet Filtering - Routing CAIDA Slammer/Sapphire
[165] ICMP Packet Analysis - Simula-

tion
Custom

[166] UDP Packet Analysis - Routing -
Simulation

CAIDA Slammer

[45] Routing - Time Series CAIDA Witty

[167] Distributed Monitoring Sensors Custom
Blaster -
Slammer -
Code Red II

[46] Packet Filtering - Routing IMS - Arbor Blaster
[168] Analytic Modeling - Simulation Custom
[169] Packet Filtering - Routing CAIDA & iSink Witty
[170] Time Series CAIDA Witty

[171,178] Kalman Filter - Simulation CAIDA
Code Red -

SQL Slammer -
Blaster

[172] Time Series - Clustering Honeyd/Leurre.com

[173] Flow-Based - Clustering Custom

Welchi -
Slammer -
Opasoft -
Messenger

[78] Micro & Macro Analysis NICTER W32.Downadup
[174,175] Maximum Likelihood & Regres-

sion
Custom Code Red

[176] Packet Filtering & Source OS Custom Conficker
[177] Bloom Filter - Packet Filtering Custom

Table 3.14: Worm Investigation Research Papers - Summary

analysis. Table 3.14 summarizes these contributions. The majority of techniques

are focused on packet analysis, routing, mathematical models, statistics and time

series.

Moore et al. [163] analyze the Code-Red worm. Primarily, the authors showed

the spread of this worm based on its deactivation and infection. The worm infection

rate peaked at 2000 hosts per minute. Subsequently, the authors geographically lo-

cated and measured the population of the worm and checked affected ISPs and top

level domains. Additionally, Moore et al. [44,164] study the Slammer worm through

darknet analysis. In particular, they showed how this worm selects its victims and
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explained the reasons behind its fast propagation. They further discussed the pit-

falls of the worm’s author which aid in its discovery. In addition, they executed

several related measures, geographically located the worm’s victims, and listed the

geographic distribution of the worm. Finally, the authors highlighted the impact of

the Slammer worm on Internet operations. Likewise, Berk et al. [165] present a tech-

nique to identify worm spread after a short period of time. This method detected

worm spread only when 10% of the victims are infected and with a detection perfor-

mance achieved with sensor covering only 1% to 2% of the monitored space. This

automated system is based on ICMP unreachable messages. This proposed method-

ology examines worms and presents simulation results that measure the detection

speed of active hosts. Also, Staniford et al. [166] investigate UDP-based worms. The

authors simulate the Slammer worm, adjust its latency measurements and monitor

its packet delivery rates. The results showed that 95% of 1 million vulnerable hosts

can be infected in only 510 milliseconds, whereas another TCP based service can

be 95% saturated within 1.3 seconds. To avoid worm containment techniques, the

authors suggest that flash worms should reduce their speed and use deeper spread

trees. Furthermore, the proposed approach includes defense mechanisms to detect

flash worms. In addition, Shannon and Moore [45] study the Witty worm, which

targets a buffer overflow flaw in many firewall products having Internet Security

Systems. The authors shared a general view of the worm’s spread, its victims and

features. Similarly, Kumar et al. [169] analyze the propagation of the Witty worm.

The authors exploit the structure of the code including its pseudo-random number

generation function. Using limited darknet data, the researchers were able to mine

individual packets’ rate of infection prior to loss, corrected noise generated by the

worm, and disclosed the worm’s failure to reach all potential victims. Furthermore,

these scientists explored the complete attack infection scenario tree and uncovered

a target on a US military base. Furthermore, Abu Rajab et al. [170] utilize darknet

data to infer the sequence of worms infection. The authors test the reliability and
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effectiveness of their proposed technique independent of scanning rate, vulnerable

population and the sensor size. These authors measured the accuracy of this time

series-based methodology, which reaches 80% after a few hundred initial infected

machines. This technique further provided insights into the characteristics of the

hit-list. Last but not least, Zou et al. [171, 178] investigate worms in two separate

works. First, the authors propose several algorithms (i.e., Kalman filter) that ef-

fectively detect worm presence and its corresponding sensors. Second, they showed

that they can predict the overall vulnerable population size of a uniform-scan such

as Code Red. They further accurately estimated the infection size based on the

analyzed data.

Moreover, Bailey et al. [46] use a /8 darknet network from the IMS project to

describe observations of the Blaster worm since its beginning in 2003. The authors

explain how they measure its propagation, attack scenario, worm characteristics, life

cycle in 2003, and persistence in 2004. Furthermore, Richardson et al. [168] examine

how darknet affected the ability of global scanning worm detectors. They propose

statistical models of darknet and combine them with random constant spread model

of worm propagation to calculate the probability that a worm detector would be able

to raise an alarm. Through their analysis, the authors concluded that global scan-

ning worm detectors are not a viable long-term strategy for detecting worms in early

stages. Additionally, Cooke et al. [167] try to understand non-uniformity in worms’

behavior. Using a large darknet data rich with Blaster, Slammer and Code Red

II infections, the authors analyzed and discovered three bias in malware behavior.

More on worms detection, Pham et al. [172] tackle the problem of discovering multi-

headed worms in the context of a larger dataset. Based on a 15 month of data, the

researchers were able to confirm the existence of multi-headed worms and provided

insights on worm behaviors. Kanda et al. [173] believe that worm-infected machine

traffic characteristics are distinguishable from regular machines. They state that

the difference in traffic between benign and malicious traffic can be classified by
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k-means clustering. Based on the volume of data, they also found that the proposed

metric can isolate malicious traffic which has a small influence. Furthermore, Eto et

al. [78] proposed an approach to understand the intentions of attackers and to have a

comprehensive look of online threats. With focus on the W32.Downadup worm, the

latter researchers found that 60% of their darknet attacking hosts are related to the

above-mentioned malware. The authors also validated their findings with 86.18%

accuracy using correlation analysis. Furthermore, Wang et al. [174, 175] estimate

the temporal features of worms through simulation and analysis of darknet traffic.

They propose several methods to detect the time of infection in order to rebuild the

worm infection pattern. They leveraged this inference as a detection mechanism and

estimate the detection error for various estimators. In addition, Irwin [176] studied

worms in general and Conficker in particular. The author discussed the analysis

of 16 million related darknet packets targeting port 445/tcp using a /24 address

block. He further provided an overview and characterization of the collected data,

including size and time to live (TTL) value analysis. This work pinpointed a flaw in

the Conficker scanning algorithm [176]. Finally, the author located geographically

the highly targeted victims based on region and numerical proximity. Finally, in

an attempt to identify the location of worms binaries and stop their spread, Chen

et al. [177] use the flexibility and high performance of network processors. The

proposed inspection engine is built on top of an advanced network processor. The

work includes testing and evaluating procedures to improve the performance of the

proposed technique on real darknet data. The authors made the tool available for

the anti-worm research community.

Botnet is a platform for adversaries to generate large-scale and distributed

cyber attacks. We list below the research works that leverage passive monitoring

to investigate botnet activities. Table 3.15 summarizes these publications. Contri-

butions are divided into several techniques, mainly, trap-based monitors, clustering
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and correlation.

Publications Approach/Technique Contribution Tool/Project

[179] Diurnal Shaping Functions Studying Botnet Spread Dy-
namics

Honeyd

[180] Time Series Tracking Botnet Activities Honeyd/Leurre.com
[181] Hybrid Designing a Hybrid P2P Bot-

net
Custom

[182] Data Correlation Outlining the Genesis and
Structure of Zombies and Bot-
net

IMS

[183] Cross Cluster Correlation Presenting a Platform for Bot-
net Detection

BotMiner

[184] DNS-based Blackhole Fingerprinting Botnet Activ-
ities Using a Non-interactive
Approach

Custom

[185] Spam Sinkhole Studying Spammers’ Behavior Custom
[186] IDS Correlation Botnet Infection Detection BotHunter

Table 3.15: Botnet Research Papers - Summary

First, Dagon et al. [179] study how time and location affect botnet spread

dynamics. They create a diurnal propagation model that uses shaping functions

to capture regional variations in online vulnerable populations. The model aims at

comparing propagation rates for different botnets, prioritizing response and predict-

ing future botnet infections. The authors found that time zones play an important

role in botnet growth dynamics, and that factors such as time of release are impor-

tant to short term spread rates. For data collection and validation, the authors used

several tools including Tarpit [26]. The researchers demonstrated that their model is

more accurate than the previous ones and that it accurately predicts botnet popula-

tion growth. Furthermore, Ramachandran et al. [184] perform a counter-intelligence

passive monitoring of DNS trap to infer botnets’ activities without interacting with

them. The authors were able to identify scanning activities performed by botmas-

ters and suggested early bot detection techniques. Ramachandran et al. [185] further

study the behavior of spammers through the analysis of a 17 month period of traffic

flows to spam trap.

Second, Cooke et al. [182] outline the genesis and structure of zombies and
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botnet. The authors monitor command and control (C&C) and Internet Relay Chat

(IRC) communication. By correlating security information from multiple sources,

the authors elaborate on their botnet detection strategy. Additionally, Gu et al. [186]

present a new strategy for network monitoring, which aims at inferring the infection

and the coordination dialog of a successful malware infection. Through the analysis

of a /17 unused address space, the authors introduce BotHunter as an application to

track the flows between internal and external entities. Using real network traces, the

authors further evaluate the effectiveness of the project in detecting a variety of real-

world botnets with low false positive rates. In a similar work, Gu et al. [183] present

a general botnet detection framework called BotMiner. The authors started their

investigation from essential botnet properties such as bots communication with C&C

servers/peers. The technique uses cross cluster correlation to identify bots that share

common malicious network patterns. This clustering methodology adopts many

filters which include one-way traffic extraction such as scanning activity through

uncompleted communication.

Other researchers such as Pham and Dacier [180] demonstrate how to track

botnet armies of zombies to characterize their lifetime and size. First, they propose

a time series technique to identify attack events in a large dataset of traces. Second,

they identified long-living armies of zombies. Third, they showed the importance

of selecting the observation viewpoint when trying to group such traces for analysis

purposes. Last but not least, Wang et al. [181] present the design of an advanced

hybrid P2P botnet. The system uses various features such as robust network con-

nectivity, individualized encryption and control traffic dispersion, etc. To defend

against such a botnet, the authors elaborate on various approaches including anal-

ysis via darknet space. In this context, the researches discover that if the darknet

can capture 200 copies of peer lists, network security defenders will be able to know

more than 95% of bots used in the peer-list updating procedure.
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Distributed Reflection Denial of Service attack is also known as am-

plification threat. This is a well known practice of a DDoS, in which malicious

users abuse publically reachable servers to overwhelm a victim with amplified reply

traffic [208,209]. The technique consists of an invader directing a query to an open

server having the source IP spoofed to be the victim’s address. Subsequently, all

server responses will be sent to the targeted victim. In order to have a high im-

pact on the victim, the attackers leverage requests with large size replies, and hence

increase the amplification of the attack. Moreover, in order to increase the size of

the attack with little effort, attackers use botnet to synchronize an army of bots

and order them to send the requests. In recent research, DRDoS [33] activities are

found to abuse several applications running on top of TCP [210] and UDP [32]. In

our previous work [31], we have proposed a novel approach to infer and characterize

large-scale DNS-based DRDoS activities through the darknet space. Complemen-

tary to the pioneer work on inferring DDoS victims using backscattered traffic [30],

the proposed approach leverages DNS queries (non backscattered) that seek open

DNS resolvers to execute the attack. The approach uncovered traces from the largest

DRDoS attack of March 2013 against Spamhaus [211]. More on our DRDoS analysis

is presented in Chapter 6.

Malicious Activities

Malicious activities consist mainly of two parts, namely, scanning and spoofing.

Scanning or reconnaissance activities are the first step in a cyber attack life

cycle. In a typical attack scenario, adversaries execute a scan activity to search for

vulnerabilities online before launching an attack on the vulnerable victim(s). Table

3.16 summarizes related research publications. The techniques are mainly based

on time series and statistical models, in addition to network routing and packet

analysis.
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Publications Approach/Technique Contribution Tool/Project

[187,188] Time Series - Statistics - IDS Inferring Scanning Behavior Custom
[85] Spectrum Analysis Extracting Malware Feature SPADE

[28,190] Packet Filtering - Routing
Analyzing a

World-wide VoIP
SIP Scanning Campaign

CAIDA

[189,192] Statistics - Time Series
Proposing a General
Framework to Extract
Global Botnet Events

honeyd

[191] White Hole
Defeating Malicious
Probing Activities

Dark Oracle

Table 3.16: Scanning Research Papers - Summary

The first group leverages time series and statistical models to investigate cyber

activities on darknet. For instance, Bou-Harb et al. [187,212] attempt to infer scan-

ning or probing activities and identify the technique used to perform such probing.

The approach, which is based on various statistical and probabilistic techniques,

tries to identify the machinery of the scan. The analysis is done on large darknet

data and shows promising results. The same authors propose an approach to de-

tect and cluster cyber attacks targeting corporate networks. They evaluated the

approach and found promising results when compared with the mostly used NIDS

(snort) [188]. Furthermore, Eto et al. [85] focus on the oscillations of the destination

IP addresses of scan packets to propose the concept of malware feature extraction.

They implemented and evaluated a distinct analysis method dubbed as SPADE.

The technique applies a spectrum analysis methodology to realize a fundamental

goal, which is to grasp the general trend of malware propagation from only scan

data. Through several evaluations, the authors show that SPADE successfully ex-

tract and distinguish malware features. Additionally, Li et al. [189] propose a general

framework to extract botnet global scanning events. Using honeyd, where half of

the sensors are dark, the authors analyze one year of data from a large research

institution to study six different botnet scanning characteristics. Based on scanning

techniques, the researchers distinguish two botnet arrival/departure patterns. The
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authors study the scan behavior and differentiate between exponential and linear

distributions. The result was affected by the randomness of scanning activities and

the high range of scans, which cross the sensor IP space. In a relevant work, the

authors investigate probing events of botnet. The discussed techniques are suitable

for users who deploy darknet. The goal is to implement techniques that can help

understand the strategy and purpose of the distributed probing events on the local

network. Moreover, through the local view of sensors, the researchers designed the

scheme of scanning activities, cross-validated their findings with DShield data and

showed promising precision [192].

The second group leverage network routing techniques. For example, Dain-

otti et al. [28] present the measurement and analysis of a 12-day world-wide cyber

scanning campaign targeting VoIP (SIP) servers. The discovery has occurred while

analyzing some large-scale probing events [190]. Their analysis is based on their

collected data using a /8 dark IP address block. The authors note that the SIP

scanning campaign involved approximately 3 million distinct source addresses (scan-

ning bots), generated around 20 million probes, and targeted roughly 14.5 million

destinations. For illustration purposes, the authors created a world map animation

of the scanning campaign. Finally, Gu et al. [191] introduce a technique to counter

scanning propagation. They propose the use of several components exploiting white

hole networks, which are systems that co-occupy populated network segments to

mislead and defeat malicious probing activities. Among these components, the au-

thors use an address mapper that actively gathers and updates the unused IP/port

segment of the network that the white hole can occupy. The white hole technique

can deter, slow down and halt the spread of critical scanning malware. The authors

demonstrate the effectiveness of their approach by using analytical reasoning and

simulations using real trace and address distribution data. They further prove the

success of their work even when applied to small darknet address blocks.

68



Spoofing is a technique to fake the identify of adversaries. Table 3.17 sum-

marizes the related works that leverage darknet data. The techniques employ packet

analysis and are divided into two categories.

Publications Approach/Technique Tool/Project

[193] TTL Fields & Statistics NICT
[194] TTL & Identification Fields Custom
[195] ICMP Packets - Classification Custom
[42] ICMP Packets CAIDA

Table 3.17: Spoofing Investigation Research Papers - Summary

The first group of authors leverage TTL values to investigate spoofing activ-

ities. For instance, Eto et al. [193] propose an inspection method focusing on the

TTL field of each packet in order to statistically extract spoofed IP packets from

traffic observed by darknet. They also provide an analysis engine against network

attacks. Through an empirical evaluation, the authors found that at most 1.26%

of spoofed packets exist in the darknet traffic. Similarly, Ohta et al. [194] propose

an approach for detecting spoofed packets using the TTL and identification field

frame values. The latter approach is based on time series analysis coupled with a

statistical methodology. To validate the proposed approach, the authors used two

darknet samples. They claimed that their method can extract a number of plausible

spoofing packets from real darknet traces.

The second group of researchers uses ICMP packets to classify and trace-back

spoofing activities. For example, Bi et al. [195] characterize spoofing attacks on the

Internet. They classify address spoofing into six classes based on the position of the

node being spoofed. This work also presents a trace-back mechanism to identify the

origin of DDoS source based on the ICMP packets found on darknet. The results

showed that attackers mostly use HTTP and HTTPS on top of TCP to execute

their attacks. Last but not least, Yao et al. [42] present an Internet-scale Passive IP

Trace-back mechanism that allows the tracking of the origin of anonymous traffic.
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A developed Internet route model is sequentially used to aid in reconstructing the

attack path. The researchers applied their technique to darknet data and found that

the proposed mechanism can construct a trace tree from at least one intermediate

router in 55.4% of the spoofing attacks, and can construct a tree from at least 10

routers in 23.4% of attacks.

3.2.3 Events

We list below the cyber events that are extracted through the monitoring of darknet.

Table 3.18 provides a summary of these publications. The majority of the works

leverage packet filtering and analysis to extract insights on events such as network

outages, censorship, etc.

Publications Approach/Technique Contribution Tool/Project

[199] ICMP Probes Proposing an Outage Detection
Platform

Trinocular

[11] Packet Filtering - Routing Studying Darknet Events During
Natural Phenomena

CAIDA

[196] Packet Filtering - Routing Studying Internet Censorship and
Disruption

CAIDA

[197] Packet Filtering - Routing Exploring Internet Service Inter-
ruption

Custom

[198] Packet Loss Studying the Causes of Macro-
scopic Online Disruptions

CAIDA

Table 3.18: Events Research Papers - Summary

For instance, Quan et al. [199] propose Trinocular, an outage detection plat-

form that uses ICMP probes which target darknet space. This system helps in

understanding the reliability of edge networks and has the capability to provide

precised indicator on outage period in terms of time and date. The approach leads

to more accurate (fewer false conclusions) results in comparison to the best avail-

able techniques. Furthermore, Dainotti et al. [11] study darknet during two natural

phenomena: country-level censorship and two recent earthquakes. For country-level

outages, the authors note that these events are stunningly visible using darknet
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instrumentation, and in conjunction with other sources of data, this can reveal in-

formation about how censorship is being implemented over time. The authors also

examine the number of distinct source IP addresses in darknet. They further study

how the ratio of this number, before and after the earthquakes, varies by distance

from the epicenters. It is shown that some graphs illustrated significant differences

before and after the events, while other graphs showed more subtle differences. Sim-

ilarly, the authors in [196] analyze episodes of disruptions caused by Internet cen-

sorship in two countries. Their analysis rely on multiple sources of large-scale data,

including Internet registries files, Internet routing information, and darknet data.

The authors were able to pinpoint the forms of Internet access disruptions, which

were implemented in a given region over time. Among other insights, the authors

detected Libya’s attempts to test firewall-based blocking before executing aggressive

external routing-based disconnection. The researchers claim that their methodol-

ogy can be used, in an automated fashion, to detect outages or similar macroscopic

events in other geographic or topological regions. Furthermore, Bailey et al. [197]

leverage Internet routing, backbone traffic and darknet data to explore different

infrastructure-based works to interrupt Internet services. The authors focused on

the risks of this long-term Internet evolution based on several realistic events, such

as WikiLeaks DDoS, China Facebook filtering, Iran elections and Egypt Internet

outages [197]. Finally, Benson et al. [198] extend their disruption of Internet con-

nectivity analysis to study the causes of macroscopic online disruptions. The authors

propose metrics for inferring loss of packets in link congestion through AS analysis.

This work listed three case studies to show how the approach can be used to identify

and characterize large-scale outages.
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3.2.4 Summary

Section 3.2 provided a taxonomy of several elements in the analysis process of dark-

net traffic, namely, data, threats, and events. Profiling darknet data allowed re-

searchers to understand the nature of its traffic. Moreover, darknet was mainly

designed to infer threats and malicious activities. Therefore, the analysis of darknet

data in general and the threat analysis in particular, represented the largest part of

this survey. From this section, we can conclude the following:

• A study in 2001 shows that darknet sensors occupy 5% of the whole IPv4

address space [126]. An up-to-date study is needed to approximate the current

size of darknet.

• Various data analysis techniques are leveraging darknet traffic. The majority

of studies tackle the IPv4 address space whereas less than 1% investigate IPv6

darknet.

• Packet analysis, network routing, statistics and time series techniques are the

mostly used in darknet analysis.

• Filtering misconfiguration packets is still not thoroughly investigated and is

still a gray area that requires more attention from the research community.

• Worms and scanning activities are the most common threats that can be found

on the darknet.

• Code Red and Slammer/Sapphire are the most analyzed worms on the darknet

due to their large-scale infection and propagation mechanisms.

• CAIDA data is the most widely used by researchers to investigate worms and

other malicious activities.

• Denial of Service attacks are the most severe threats that are extracted from

the analysis of darknet data.
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• Botnet investigation is considered challenging through monitoring solely dark-

net traffic. The reason behind this is that darknet considers passive monitoring

only. Therefore, other interactive techniques such as honeypots can be used

in parallel with darknet to enhance botnet investigation.

• Nowadays, DRDoS are the largest cyber threats reaching a peak of 400 Gbps

in 2014. DRDoS activities can also be measured by analyzing darknet data.

Less than 1% of the research tackled this promising area of study.

• Due to the nature of darknet, which is based on passive monitoring, and

the inter-activities in botnet systems, very few researchers were able to link

botnet research to darknet analysis. In addition, due to reflection attacks,

which have risen in the past couple years, several researchers were unaware of

the importance of darknet in investigating such reflection activities. Therefore,

botnet and DRDoS activities require more attention from the darknet research

community.

• Differentiating between scanning and DRDoS is still partially a difficult prob-

lem due to the fact that both leverage scan-based techniques to operate. Scan-

ning activities probe the Internet to collect information, whereas reflection at-

tacks generate scan-based requests to redirect amplified reply traffic to victim.

• Scanning and spoofing are not threats but malicious activities that adversaries

utilize to acquire information or hide identities respectively. More research has

been done on scanning.

• Packet analysis is the only technique used on darknet data to investigate spoof-

ing activities. This method includes inspecting ICMP packets and TTL values.

Less than 2% of research has been done on spoofing and darknet. Therefore,

spoofing is still a severe malicious activity that needs more attention from the

security research community.
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• Darknet can be used to check Internet policies due to certain events such as po-

litical, or geophysical, among others. For instance, the variation in the amount

of darknet traffic generated, before and after a censorship policy, could allow

researchers to assess the failure-to-success ratio of initiating this policy. Dur-

ing our study, we have found that analyzing darknet traffic upon worldwide

events is the most recent.

The next section is the last part of our darknet taxonomy. The latter includes

a state-of-the-art study of darknet visualization tools and techniques.

3.3 Darknet Visualization

Last but not least, we survey the literature and elaborate on the usage of darknet

traffic in detecting malicious activities by exploiting visualization techniques and

tools. The taxonomy of the visualization-based research works is shown in Figure

3.6. Furthermore, Table 3.19 summarizes these publications.

Le et al. [213] propose a novel approach to infer malicious network traffic based

on graph theory concepts such as degree distribution, maximum degree and distance

measures. The authors model the network traffic using the traffic dispersion graphs

(TDG) technique [213]. As such, they analyze the differences of TDG graphs in time

series to detect malicious activities and introduce a technique to identify attack pat-

terns. The approach was validated using real network traces. Similarly, Joslyn et

al. [214] propose a new technique to facilitate and visualize large-scale data. The

graph-based approach leverages network routing databases. The authors described

and presented real use cases in two graph-oriented query languages. This hybrid

approach presents a new class of graph-relational analysis. In another visualization

contribution, Krasser et al. [215] build a network traffic visualization system capable

of both real-time and forensic data analysis. They aim to complement manual and
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Visualization

Tools [226]

Techniques

Hilbert Curve
Mapping

[225]

Parallel Co-
ordinate

[224]

Image Pro-
cessing

[222, 223]

Hough
Transform

[221]

Game Engine [218–220]

Intrusion
Detection

[216, 217]

Information
Visualization

[215]

Image and
Graph Theory

[213, 214]

Figure 3.6: Visualization Research Taxonomy - Overview

automated analysis of network traffic by applying effective information visualization

techniques in order to decrease the ratio of false positives and false negatives. Using

link analysis and parallel coordinate plots with time sequence animation, the authors

examine various dimensions that provide insights into both legitimate and malicious

network activity. To validate the system operation, they used a dataset from five

large-scale botnet traffic collected using darknet. Their results indicated that the

system provides the capability to rapidly scan large dataset of network traffic for

malicious activity despite visual noise. Moreover, Fontugne et al. [222] propose an

approach for detecting traffic anomalies based on pattern recognition. The authors

take advantage of graphical representations to break down the dimensions of net-

work traffic. They further map network traffic data into snapshots rather than

traditional time series. Moreover, these researchers identify unusual distributions
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Publications Approach/Technique Contribution Tool/Project

[214] Graph-Based Facilitating and Visualizing
Large-scale Data

Custom

[213] Graph Theory Inferring Malicious Network
Events

CAIDA

[215]
Link Analysis -

Parallel Coordinate Plots
Building a Network Traffic Visu-
alization System

Custom

[222,223]
Pattern Recognition -
Image Processing

Detecting Traffic Anomalies Custom

[221] Hough Transform Proposing a Technique to Detect
Scanning Activities

Custom

[218,219] Game Engine Enabling Collaborative Network
Control

Custom

[220] Game Engine - Greynet Visualizing Network Data
L3DGEWorld -
OpenArena

[224]
Parallel Coordinate

Information Visualization
Detecting and Visualizing Net-
work Threats

PCAV - CAIDA

[225] Hilbert Curve Mapping Facilitating the Analysis of Large-
scale Events

CAIDA

[216,217] IDS Visualizing Various Backscat-
tered and Scanning Traffic

InetVis

Table 3.19: Visualization Research Papers - Summary

in the traffic features through simple patterns. Their technique was implemented

and its efficiency was demonstrated by comparing it with another statistical anal-

ysis technique. A variety of network traffic anomalies were detected by analyzing

traffic from /18 network address space. They also propose a tool for visualizing and

exploring network traffic on all temporal and spatial scales. Their tool aims to help

researchers inspect traffic with basic features [223].

Fukuda et al. [221] propose a technique to detect scanning activities in dark-

net traffic. They aim to estimate probing speed of change in terms of destination

addresses, source ports and destination ports. Their method is based on an image

processing technique applied to a two-dimensional image that represents unwanted

traffic. They employ the progressive probabilistic Hough transform algorithm to

detect edges in an image representing unwanted activities as lines. The authors ap-

ply their method on darknet traffic traces collected over a three-year period. They
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concluded that most of the scanning activities were characterized by intensive scans

to a specific host. Furthermore, they found that few port scanning activities take

place over a wide destination port space. Harrop and Armitage [218, 219] describe

a system where a 3D game engine technology is used to enable collaborative net-

work control. The proposed approach leverages simplistic interaction techniques by

translating network events into visual activities. Their idea is to monitor a darknet

network state that is represented in the 3D world by avatars spinning and jumping to

visually alert network operators to a network anomaly. Subsequently, the operators

can detect and shoot the alerting avatars to trigger a firewall access control list on a

border router, preventing any further attacks. In a similar work, Parry [220] describe

the L3DGEWorld project that is based on the OpenArena open source game engine

platform. The approach aims to visualize network data based on the engine of a spe-

cific game. The approach describes the input interface to the L3DGEWorld server,

which can be used to visualize and represent data in a real-time fashion. Moreover,

the proposed approach also describes the output abstraction layer, through which

data is connected from the virtual platform to the external daemon on the output

interface.

Furthermore, several contributions attempt to visualize backscatter data from

darknet. For instance, Choi et al. [224] build a model to detect and visualize net-

work threats on parallel coordinates. This parallel coordinate attack visualization

(PCAV) tool is able to detect zero-day attacks such as DDoS. PCAV operates based

on several coordinates in a packet such as source and destination IPs, ports, and av-

erage packet length. Nine signatures were developed based on a hashing algorithm.

Following the detection phase, network administrators must intuitively recognize

and respond to the threat. This flow-based tool was proven to be efficient when

applied to backscatter data. Furthermore, Irwin and Pilkington [225] develop a

tool for facilitating the analysis of large-scale darknet traffic. In particular, the tool
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focuses on the analysis of data coming from different sources. The authors pre-

serve the concept of nearness among numerical sequential IP address blocks using

a Hilbert curve technique as a means of ordering dots within a visualization area.

The authors also visualize the evaluation of worm spread algorithms. They further

discussed the results and the importance of such tools to facilitate the analysis of big

data. Riel and Irwin [216] propose InetVis, a visualization tool for darknet traffic.

This tool plots TCP and UDP packets within a cube and ICMP packets within a

flat plane. The authors adopt a time window to continue displaying an event after

it has occurred. The researchers capture thousands of packets to test their tool.

They observed numerous probing activities such as vertical and horizontal scans,

step up scans (scan on the same port followed by stepping up the port range) and

slow scans. Similarly, the authors in [217] demonstrate and compare InetVis with

two open source NIDSs, Snort and BRO, where the advantages of the former are

discussed. In this work, InetVis was re-implemented and enhanced. The authors

argue that their tool is effective in visualizing various backscattered and scanning

traffic while not suffering from high rates of false positives and negatives as do the

other NIDSs.

It is noteworthy to mention that various tools exist on the Internet for darknet

data visualization and analysis. The aim is typically to facilitate the analysis, the

display, the collection and the presentation of the data. We list below tools from

CAIDA [226] such as Cuttlefish for producing animated images that uncover the

connection between the diurnal and geographical patters of data; GTrace for graph-

ically trace-routing the destination; Geoplot for creating geographical images of data;

LibSea for representing big directed graphs in memory and on disk; Mapnet for vi-

sualizing the infrastructure of multi-backbone providers; Otter for showing arbitrary

communication information that can be presented as a group of nodes, connections

or paths; Plankton for illustrating international cache topology; Plot-latlong for ge-

ographically mapping hosts; PlotPaths for displaying reverse and forward packets
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from one to one or one to many connections; and finally Walrus for representing

large graphs in 3D.

3.3.1 Summary

In the last part of this darknet taxonomy, we have discussed several techniques and

tools for darknet visualization. From what has been discussed in the that part of

Section VI, we can conclude the following points:

• Several research works attempt to visualize darknet data by leveraging various

techniques. The majority of these visualization techniques fall into two main

areas, namely, generic-based and threat-based.

• Generic-based techniques aim at providing a graphical representation of usual

darknet data (i.e., backscatter), whereas threat-based ones visualize darknet

threats (i.e., DDoS).

• Generic-based techniques leverage mainly graph theory, whereas threat-based

ones utilize mainly pattern recognition and image processing.

• Nevertheless, graph theory and game engines methods are used in both generic-

based and threat-based techniques to model darknet network traffic.

• The majority (66.6%) of the visualization techniques are used to visualize

threats on darknet.

• Although darknet data is similar to any network traffic, CAIDA research center

is the primarily contributor to develop designated darknet visualization tools

to depict large-scale events and threats.

• The visualization of darknet data is the smallest part of our darknet taxonomy.
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3.4 Related Surveys

As previously discussed, a thin line distinguishes darknet from other trap-based

monitoring systems such as IP gray space [48, 49], greynet [24], honeytokens [227]

and darkports [228]. However, two main groups of surveys can be related to our

work. The first group focused solely on a specific technology or threat whereas the

second elaborated on trap-based monitoring systems.

First, various surveys tackled the detection techniques in network traffic such

as NIDS [229], threats such as DDoS [230], botnet [231, 232] and worms [233], and

malicious activities such as scanning [234]. Compared to our work, this group of

research focused on a specific technology or a threat only whereas ours was more

comprehensive. For instance, our survey included not only a study on DDoS threats,

but also provided an overview on several darknet topics that can be leveraged to

infer various insights from the Internet, including threats, events, techniques and

tools.

Second, in regard to surveys that tackled trap-based monitoring systems,

Zhang et al. [235] were among the first to classify honeypots in 2003. They high-

lighted data capture and data control in honeypots. Furthermore, they provided a

classification of these traps based on security and application purposes. Further-

more, Seifert et al. [236] presented a taxonomy of honeypots. The authors described

a classification of honeypots based on several schemes and were able to distinguish

between seven types of honeypots (i.e., low and high interactive). In 2012, Bringer et

al. [237] divided honeypot research into 5 major areas: types of honeypots, analysis

of data, configuration, detection of sensors, and legal and ethical issues. The main

difference between the works in [235–237] and ours is the scope of the survey. This

group of works focused on honeypots, including active monitoring. Complementary,

our work focused solely on passive monitoring of unused IP addresses. The only

work that touched darknet research is [236] by discussing darknet and comparing it

to other monitoring systems (low and high interactive honeypots). Our work is more

80



comprehensive in regard to darknet study as it covers development, data analysis,

and visualization.

Therefore, our survey is more close to the second group of contributions which

tackled trap-based monitoring systems. Our survey complements the aforemen-

tioned related research works. Furthermore, the realistic analysis and investigation

of real data provides more understanding and hands-on investigation experience

on darknet data and threat analysis. We provided a guideline to develop, analyze

and visualize real cyber insights by leveraging darknet data. The extracted darknet

knowledge in our work can help in building a cyber intelligence platform for Internet

monitoring. For more details on our survey, we refer the reader to [8].

After this broad study of darknet, in the next chapter, we start investigating

real darknet data.
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Chapter 4

Darknet Investigation

In this chapter, we initiate our darknet data investigation. In this context, we elab-

orate on profiling darknet data. Such information could generate indicators of cyber

threat activity as well as providing an in-depth understanding of the nature of its

traffic. Particularly, we analyze darknet packets distribution, its used transport,

network and application layer protocols and pinpoint its resolved domain names.

Furthermore, we identify its IP classes and destination ports as well as geographi-

cally locate its source countries. We further investigate darknet-triggered threats.

The aim is to explore darknet embedded threats and categorize their severities. Fi-

nally, we contribute by exploring the inter-correlation of such threats, by applying

association rule mining techniques, to build threat association rules. Specifically, we

generate clusters of threats targeting a specific victim.

In this context, the aim of this chapter is to answer the following set of ques-

tions:

1. What is the nature of darknet traffic and its underlying content?

2. Who contributes to darknet traffic?

3. Are there any embedded darknet threats?
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4. Can we show that such threats are correlated and hence provide their real

world interpretation and impact?

To answer these questions, the work presented in this chapter contributes in

the following three aspects:

• Analysis accuracy: The analyzed darknet data includes packet types that were

omitted by other research works (i.e., ICMP in [111]). As such, the data set

is rich which contributes to a better accuracy of the analysis.

• Threat analysis: By adopting an analysis methodology based on the use of

network intrusion detection systems (NIDSs), our approach yields real world

threats that are embedded in darknet traffic. Such results will be presented in

Section 4.2.1.

• Association rule mining approach: By applying association rule mining and

correlation techniques on the threat data, we investigate clusters of threats

that co-occur. Such cyber threat intelligence proves that specific threats are

correlated in addition to providing a better understating by interpreting the

attack scenarios targeting specific network destinations.

4.1 Darknet Measurements

In order to better understand the nature of darknet data, we primarily provide an

overview of darknet traffic and insights on large volumes of darknet traffic ema-

nating from numerous organizations. Second, we discuss three case studies related

to separate events, namely, probing, botnet and DRDoS activities. Our dataset is

collected from several sources of real-life data such as CAIDA1 and DShield2.

1CAIDA Dataset: http://www.caida.org/data/
2DShield: https://www.dshield.org/
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4.1.1 Inside Darknet

To understand the nature of darknet data, we provide an overview of its traffic. The

dataset is pure darknet data captured during a five-year period from a single unused

/8 network address block [2].

Count TCP UDP ICMP

Packet 76.6% 19.9% 2.8%
Bytes 55.82% 40.82% 2.66%

Table 4.1: Protocols Distribution - Inspired by [2]

Table 4.1 lists the distribution of darknet transport and network layer pro-

tocols. It is shown that the majority of darknet traffic consists of TCP packets.

Several facts can explain the TCP dominance. First, TCP provides various scan-

ning techniques (i.e., SYN, Fragmentation, SYN-ACK) [238]. Second, generating

TCP scanning is generally more feasible than UDP [239]. Finally, as noted in [108],

well-known cyber attacks are specifically targeting TCP services.

Port Service

445 microsoft-ds
139 NetBIOS
4662 eDonkey
80 HTTP
135 Endpoint Mapper

Table 4.2: Top TCP-based Services

We further list top application protocols found on darknet. Table 4.2 depicts

the top 5 TCP-based services that have been observed based on [2]. The results

demonstrate that the Microsoft Directory Service (microsoft-ds) is leading while the

NetBIOS is ranked second. The former service is known to be abused by malware

such as Conficker worm [176]. More information on the Conficker worm can be

found next.
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4.1.2 Case Studies

Base on real darknet data analysis, we provide three case studies on separate events,

namely, Conficker worm in 2008 and 2009, Sality SIP scan botnet in 2011, and the

largest DRDoS attack in 2014.

Case Study 1 - Conficker Worm in 2008 and 2009

In 2008, a new exploit targeted Windows services. Consequently, Microsoft an-

nounced a security update (MS08-067) to resolve the issue. The threat originated

from a malicious TCP scanning behavior by a worm named Conficker [240]. The

latter is a malware designed to exploit victim machines by exploiting TCP port

445 (Microsoft Directory Services). Conficker infected millions of computers in over

200 countries, which render it one of the largest known computer worms. In this

case study, we show the outcome of the darknet analysis that inferred random scans

generated by this worm. The dataset of the attack on the 20th and 21th of January

2009 is shown in Figure 4.1.
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Figure 4.1: Conficker Worm in 2009 - Traffic Distribution (1 hour interval)

Several versions of Conficker (A and B) were involved in the attack. It is

noteworthy to mention that the figures depict the peak at 2 pm in the analyzed 2009

dataset. However, based on the analysis done by other researchers, the attack also
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peaked at 2 pm during the 2008 dataset [240]. This could pinpoint the orchestration

and automation of the machinery behind the attack, which is shown as a diurnal

pattern in [240,241].

Case Study 2 - Sality Botnet SIP Scan in 2011

In February 2011, the Sality botnet executed a /0 SIP scan through the whole IPv4

address space. This 12-day event involved 3 million unique IP addresses in one of the

most coordinated cyber scanning campaigns ever. The botnet generated 20 million

scans to 14.5 million addresses, which is almost 86.6% of the whole /8monitors. This

campaign targeted SIP services, which run on port 5060 and threatened the voice

communications infrastructure. The darknet observation of this event is depicted in

Figure 4.2. The campaign initiated in January and ended in February, 2011. The

attack peaked at 21,000 hosts within a 5-minute interval. More on this attack can

be found in [28].
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Figure 4.2: Sality Botnet SIP Scan in 2011 - Traffic Distribution (12 days)

Case Study 3 - The Largest DRDoS Attack in 2014

In 2013, a 300-Gbps DRDoS attack targeted Spamhaus [211]. In February 2014,

the largest DRDoS attack in history, which peaked at 400 Gbps of bandwidth, hit

the Internet infrastructure. We have depicted the latter attack through the DShield
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data in Figure 4.3. This image shows the source distribution of UDP-based packets

on port 123-NTP (in yellow) with the corresponding generated reports (in blue).

The graph depicts the increase in NTP packets and reports during the attack.

Figure 4.3: The Largest NTP-based DRDoS Attack in History

Typically, in an NTP amplification attack, the adversary generates a flood of

spoofed UDP network packets. This large amount of traffic is sent to open Network

Time Protocol servers, which operates at port number 123. This attack abuse the

MONLIST service in NTP with an aim to send amplified traffic to the victim. More

on NTP amplification DRDoS attacks in the context of darknet can be found in [242].

Similar to NTP amplification DRDoS attacks, DNS service can also be abused to

generate amplification/DRDoS attacks. More on DNS amplification and DRDoS

activities through darknet analysis can be found in [31, 243].

The aforementioned darknet measurements and case studies provide a basic

understanding on what is darknet and how it is leveraged to generate cyber intel-

ligence. Next, we start characterizing darknet, but this time using our own data,

which is obtained from our trusted partner at Farsight Security.
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4.2 Darknet Profiling

Similarly, we have performed darknet traffic profiling on our monitored sensors. To

accomplish this task, we analyzed some darknet data collected in the period between

September 16th, 2011 and May 9th, 2012. The analyzed data feeds are retrieved in

real-time from a trusted third party framework3. The data consists of pure darknet

traffic collected from many countries and monitor /13 address blocks.

We initiated our analysis by differentiating darknet packets according to their

types following the method in [2]:

• Scanning traffic; TCP SYN packets

• Backscattering traffic, which commonly refers to unsolicited traffic that is the

result of responses to attacks with spoofed source IP address; TCP SYN+ACK,

RST, RST+ACK, and ACK packets

• The remaining traffic packets are classified as misconfiguration

Scanning Traffic Backscattering Misconfiguration

68.02% 2.00% 29.98%

Table 4.3: Packets Distribution - Nature of Traffic

Table 4.3 depicts the outcome distribution. These results reveal that scanning

or network probing constitutes the majority of darknet traffic. Note that, such traffic

could be interpreted as an indication of port scanning and/or vulnerability probing.

Such attacks, in general, are preliminary triggered before launching a targeted attack

towards a specific system. We next aim to identify the major protocols that are

used in darknet traffic. Table 4.4 provides the percentages of darknet transport and

network layer protocols. It is observed that TCP plays the major role.

3Farsight Security: https://www.farsightsecurity.com/
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TCP UDP ICMP Others

91.9% 5.5% 2.9% 0.3%

Table 4.4: Protocols Distribution

Figure 4.4 corroborates this fact by plotting the protocols distribution in a day

sample, which is the average of daily samples collected over a month’s period. TCP

dominance can be explained by two facts: First, the majority of scanning attacks

use TCP and second, there exist known attacks that specifically target TCP ports as

noted in [108]. TCP increase in Figure 4.4, especially after the 12th hour, indicates

that the darknet sensors record an increasing number of TCP packets after that

period.

Figure 4.4: Darknet Network and Transport Layer Protocols

Such information pinpoints the need for a thorough temporal analysis and

comparison of that phenomenon, which may uncover and explain the occurrence of

certain attacks at specific time periods and their absence during other periods at any

given day. Next, we profiled darknet application protocols. Figure 4.5 illustrates the

top 16 application protocols that have been found. The results demonstrate that the

Session Initiation Protocol (SIP) is leading while the Domain Name Service is ranked
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second and NetBIOS is ranked third. It is worthy to note that the SIP protocol is

excessively used in DoS attacks, specifically against voice over IP (VoIP) servers

[244], and thus its appearance as a top darknet application protocol is significant

and may be alarming.

Figure 4.5: Darknet Application Layer Protocols

We further studied the source and destination distributions of IP classes in

the darknet traffic. Table 4.5 depicts the results.

Usage
(%)

Class Source Destination

A 62.529 0.017
B 18.529 7.138
C 18.942 92.845

Table 4.5: IP Class Distribution

It is revealed that the majority of source IPs belong to class ‘A’, whereas in

the case of destination IPs, class ‘C’ plays the major role. Furthermore, Class ‘A’

proportion in the destination IPs is almost negligible, i.e., 0.017% whereas class

‘B’ contributes relatively more. It is substantial to mention that class ‘C’, being

the most destined and smallest class, could be an indication that it is as well the
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most targeted class by cyber attacks and hence further investigation in it could

yield relevant cyber intelligence. Moreover, we were interested in identifying the

resolved domain names in darknet. After performing this task, we identified that

the top-most darknet resolved domain belongs to a .cc Internet country code top-

level domain for Cocos (Keeling) Islands. Note that this domain, according to the

anti-phishing working group, constituted a significant 7.3% of all phishing attacks

detected in 2010 [245]. Similar results could feed us, in general, with relevant in-

formation about unsolicited/malicious domains that could be used by attackers.

Another analysis has been performed on the TCP and UDP ports that are used

in the collected darknet traffic. Specifically, we aimed to pinpoint the destination

ports. Such insights could reveal the targeted ports used in cyber attacks. Figures

4.6 and 4.7 illustrate such results.

Figure 4.6: Darknet TCP Targeted Ports

The top three destination darknet TCP ports, namely, ports 445, 80, and 3389

are the Microsoft active directory service, the hypertext transfer protocol, and the

Microsoft terminal server respectively. These service ports have previously suffered

from security issues and vulnerabilities. A sample of the threats targeting such ser-

vices are pinpointed in [246], [247] and [248] respectively. Hence, it is alarming that
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Figure 4.7: Darknet UDP Targeted Ports

Figure 4.8: Darknet Sources - Heat Map

such ports appear as the top darknet destination TCP ports. On the other hand,

the top three destination darknet UDP ports, namely, ports 5060, 397, 1280 are the

SIP, the multi-protocol transport network (mptn) service, and the pictography pro-

tocol respectively. The SIP protocol, as mentioned previously, is a significant target

of attack. This result further validates the integrity of our insights. Moreover, the

mptn and the pictography services are known to suffer from denial of service attacks

when a malformed request is destined to them. For the purpose of pinpointing the

sources that contribute to the darknet traffic, we perform darknet geo-localization.

Figure 4.8 depicts the heat map. According to our analysis, the source countries

reached 196 countries where the majority of source IPs are located in USA. It is
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as well noticeable that Brazil, China, and Russia represent the major portion of

source IPs compared to other countries. Note that, in Section 4.2.1, when we reveal

the darknet threat analysis and geo-locate the sources behind those threats, the

three aforementioned countries as well appear amongst the top contributed threat

countries.

4.2.1 Threat Analysis

In this section, we extend our profiling task to uncover real world threats that are

embedded in darknet traffic in addition to categorize their severities and geo-locate

their sources. For that purpose, we executed threat-based severity analysis. To

accomplish this task, Snort [41] and Bro [249], two open source NIDSs, combining

the benefits of signature, protocol and anomaly-based inspection, were implemented

and utilized. Part of their content signature detection, Snort and Bro implement

the Boyer-Moore exact string matching detection algorithm in addition to a non-

deterministic finite automata regular expression detection algorithm. To perform

the threat analysis, we configured the NIDSs with rule sets from the Sourcefire

Vulnerability Research Team and The Bro Network Security Monitor. Consequently,

we fed the darknet data to the NIDSs. A partial outcome of this procedure is

summarized in Table 4.6. The results reveal 30 distinct threats. According to

Threat Type Priority

t1 Buffer Overflow Exploit
t2 Denial of Service High
t3 VPN Attempt

t4 Traceroute Utilization
t5 Service Port Discovery Medium

t6−30 Scanning Attempts Low

Table 4.6: Darknet Threats and Corresponding Severities

the NIDSs, three threats are of high priority, two are of medium severity and the
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rest are of low priority. The first high priority threat (t1) is in fact an attempt to

possibly overflow a buffer. Specifically, a series of NOOP (no operation instructions)

were found in the data stream. Typically, most buffer overflow exploits use NOOP

commands to modify code operation [250]. Hence, this threat might indicate an

attempt to use a buffer overflow exploit. Thus, a full compromise of a system is

possible if the exploit is successful. Another high priority threat (t2) is rendered as

an attempt to cause a DoS. Particularly, a heap-based buffer overflow in Microsoft

MSN Messenger [251] is found on Windows systems. This vulnerability allows user-

assisted remote attackers to execute arbitrary code via unspecified vectors involving

video conversation handling in Web Cam and video chat sessions. As a result, DoS

and complete administrator access to a targeted system is possible. The last high

priority threat (t3) is in reality a detected virtual private network (VPN) remote

attempt on a set of darknet addresses. Although, in general, VPN is not considered a

threat, however an attempt to gain VPN access on a specific system can be alarming.

On the other hand, threats t4 and t5, and according the NIDSs, are of medium

severity. Threat (t4) represents an attempt to use a traceroute software where an

attacker can discover live hosts and routers on a target network in preparation for an

attack. Moreover, (t5) is a portmap GETPORT request to discover the port where the

Remote Procedure Call (RPC) statd is listening. An attacker can query the port

mapper to discover the port where statd runs. Consequently, this may be a precursor

to accessing statd. The remaining of the incidents are mainly scanning attempts

and are considered of low severities. Although their techniques may vary, their

end goal is to either perform port scanning or vulnerability probing in preparation

to a possible targeted attack. It is very significant to note, for the purpose of

results integrity, that such scanning attempts, that constitute the majority of the

threats, are in accordance with our darknet profiling results, specifically the packets

distribution - nature of traffic percentages (68.02%) that was demonstrated in Table

4.3 in Section 4.2. For the purpose of accomplishing a high level attribution, we
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perform geo-location of the threat sources. Figure 4.9 depicts the heat map. Note

that the threat count metric is of the order of thousands. The results reveal that

Russia and China lead in terms of number of inferred threats.

Figure 4.9: Threats Sources - Heat Map (in thousands)

4.3 Threats Correlation

There is a crucial need to further analyze the threats that have been previously

detected and discussed. This section explores the inter-correlation of such threats,

by applying association rule mining techniques, to build threat association rules.

Such work demonstrates that specific darknet threats are in fact correlated or co-

occur when targeting specific victims. Moreover, it provides insights about threat

patterns and allows the interpretation of threat scenarios.

4.3.1 Approach

The goal of this approach is to investigate the interdependence and inter-correlation

of inferred threats. Particularly, we aim to answer the following questions: Are there

any threats targeting a specific victim that follow a certain pattern? Moreover, if

some of the co-occurring threats appear in a darknet traffic, how confidently one

can predict the existence of other threats? To investigate this, we employed the

technique of frequent pattern mining (frequent item-set) and association rule min-

ing [252]. Another outcome of this approach, besides the ones mentioned above,
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is the generation of threat association rules that could be used as an input to a

classification model that is able to predict and hence mitigate future threat occur-

rences. Frequent pattern and association rule mining techniques have been proven

to be very successful for identifying hidden patterns in DNA sequences, customer

purchasing habits, text categorization, and many other applications of pattern recog-

nition. The proposed threat correlation approach is a three-step process, namely,

frequent pattern mining, association rule generation from each frequent threat-set,

and rule analysis by applying various correlation techniques. Each of these steps is

detailed below.

Frequent Pattern Mining

An item-set or a pattern is a group of two or more objects that appear together.

An item-set is a frequent pattern if its members appear together for some minimum

number of times. In the context of threat analysis, an item or an object is a threat

and an item-set is the threat-set.

Time Intervals Identified Threats

τ1 {t2, t5, t7, t9}
τ2 {t2, t5, t7}
τ3 {t2, t5}
τ4 {t1, t5, t7}
τ5 {t4, t5, t7}
τ6 {t3, t6, t8}
τ7 {t4, t5, t8}
τ8 {t3, t6, t8}
τ9 {t2, t5, t8}
τ10 {t1, t5, t7, t8, t9}

Table 4.7: Vectors of Darknet Threats

Table 4.7, which is used for illustration and explanation purposes, depicts 10

threat-sets, one threat-set per row. Let T = {t1, · · · , tm} denote the universe of all
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threats detected from the given darknet feeds F . Suppose a threat-set Ti ⊆ T de-

tected at a time interval τi represents a row or an instance in the threat table (Table

4.7). This latter shows ten threat-sets captured at time intervals {τ1, · · · , τ10}. Let
Ti ⊆ T be a threat-set or a pattern in the threat table. A pattern that contains k

threats is a k− pattern. For instance, τ1 = {t2, t5, t7, t9} is a 4− pattern. Similarly,

the support of a pattern Ti is the percentage of all the instances T in the threat

table containing Ti, denoted by support(Ti|T ). Note that the probability P (ta ∪ tb),

where ta∪tb indicates that a pattern contains both ta and tb, is the union of itemsets

ta and tb. The support is defined in equation 4.1:

support(ta ⇒ tb) = P (ta ∪ tb) (4.1)

A pattern Ti is a frequent pattern if the support of Ti is greater than or equal

to some user specified minimum support threshold, which is a real number in an

interval of [0, 1]. Further explanation of these terms is given in Example 4.3.1.

Example 4.3.1 Consider Table 4.7. Suppose the user-specified threshold min sup =

0.3, which means that a pattern Ti = {t1, · · · , tk} is frequent if at least 3 out of the

10 rows contain all threat-items in Ti. For instance, {t2, t5, t7, t9} is not a frequent

pattern because it has support 1/10 = 0.1. Similarly, {t2, t5} is a frequent 2-pattern

because it has support 4/10 = 0.4 and contains two threats. Likewise, {t5, t8} is a

frequent 2-pattern with support 3/10 = 0.3.

There are various data mining algorithms for extracting frequent patterns, such as

the Apriori [252], FP-growth [253], and ECLAT [254]. In this work, we employ

the Apriori algorithm since it has been validated in several text mining studies

[255]. Below, we provide an overview of the Apriori algorithm. Apriori is a level-

wise iterative search algorithm that uses frequent k-patterns to explore the frequent
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(k+1)-patterns. First, the set of frequent 1-pattern is found by scanning the threat

table, accumulating the support count of each threat-set, and collecting the threat

patterns containing T that also contains Ti with support(Ti|T ) ≥ min sup. The

resulting frequent 1-patterns are then used to find frequent 2-patterns, which are

then used to find frequent 3-patterns, and so on, until no more frequent k-patterns

can be found. The generation of frequent (k + 1)-pattern from frequent k-patterns

is based on the following Apriori property.

Property 4.3.1 (Apriori property) All nonempty subsets of a frequent pattern

must be frequent.

By definition, a pattern T ′i is not frequent if support (T
′
i |T ) < min sup. The above

property implies that adding a threat t to a non-frequent pattern T ′i will not make

it frequent. Thus, if a k-pattern T ′i is not frequent, then there is no need to generate

(k+1)-pattern T ′i∪T because T ′i∪T is also not frequent. The following example shows

how the Apriori algorithm exploits this property to efficiently extract all frequent

patterns or threat-sets. For a formal description, we refer the reader to [252].

Example 4.3.2 Consider Table 4.7 with min sup = 0.3. First, identify all frequent

1-patterns by scanning the threat table once to obtain the support of every threat-set.

The items having support ≥ 0.3 are frequent 1-patterns, denoted by L1 = {{t2}, {t5},
{t7}, {t8}}. Then, join L1 with itself, i.e., L1 � L1, to generate the candidate set

C2 = {{t2, t5}, {t2, t7}, {t2, t8}, {t5, t7}, {t5, t8}, {t7, t8}} and scan the threat table

once to obtain the support of every pattern in C2. Identify the frequent 2-patterns,

denoted by L2 = {{t2, t5},{t5, t7}, {t5, t8}}. Similarly, perform L2 � L2 to generate

C3 = {t5, t7, t8}. By scanning the threat table once, we found that {t5, t7, t8} is not

frequent, i.e., 3-pattern L3 is empty. The finding of each set of frequent k-patterns

requires one full scan of the rows in Table 4.7.
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Association Rule Mining

The selected frequent patterns or frequent threat-sets are used to investigate the

correlation and interdependence of the subsets of each frequent threat-set. This

can be achieved by applying association rule mining techniques [256]. For this,

all 1-patterns are deleted as they contain only one threat and thus can not be

associated with any other threat. The 2-patterns threat-sets are used to extract

single-dimensional association rules while the 3-patterns and higher patterns are

used to construct multi-dimensional association rules. To construct an association

rule of threats, we need to calculate the confidence for each frequent threat-set. The

confidence is the percentage of threat-sets containing threat Y in addition to threat

X with regard to the overall number of threat-sets containing X. Assume we have

a threat-set {ta, tb} for which the association rule would be {ta} ⇒ tb. Hence, the

association rule has a confidence c in the threat table T , where P is the probability

and c is the percentage of threat-sets in T containing ta that also contains tb.

This statement is mathematically expressed in Equation 4.2.

confidence(ta ⇒ tb) = P (tb|ta) = support{ta ∪ tb}
support{ta} (4.2)

Having support-count of (ta ∪ tb) and ta, we can calculate confidence(ta ⇒ tb) using

Equation 4.2. Once the frequent threat-sets are extracted, the related association

rule of a frequent threat-set Ti can be constructed as follows:

• Generate all non-empty subsets of Ti

• For every non-empty subset S, construct a rule (S ⇒ (Ti −S)), provided that

the support(Ti)
support(S)

≥ min conf
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Correlation Analysis

In order to investigate the interdependency of the threats, various correlation tech-

niques including χ2, cosine measure, and lift [256] can be used. In the current study,

we use lift, which is based on probabilities and its results are interpretable by non-

technical domain experts without the help of data mining experts. The correlation

technique lift measures how many times more often threats ta and tb occur together

than expected if they are statistically independent. The lift indicates whether the

identified threat patterns are correlated together. It is mathematically expressed as

follows:

lift(ta, tb) =
P (ta ∪ tb)

P (ta)P (tb)
(4.3)

If the value of Equation 4.3 is equal to 1 then threats ta and tb are independent and

therefore have no correlation; otherwise they are either negatively correlated (i.e.,

lift < 1) or positively correlated (i.e., lift > 1 ).

4.4 Empirical Evaluation

Darknet Feed
Providers

Analyzed
Address
Blocks

Association Rules Confidence Lift Count

Destination
Network 1

w1.x1.y1.z1/24 1.{t7, t8, t9} ⇒ t10
2.{t10, t14, t13} ⇒ t11

0.63
0.56

3.64
7.06

282
306

Destination
Network 2

w2.x2.y2.z2/24 3.{t10, t15, t4} ⇒ t1
4.{t12, t11, t13} ⇒ t10

0.76
0.92

1.54
3.81

193
359

Destination
Network 3

w3.x3.y3.z3/24 5.{t10, t7, t8, t9, t13} ⇒ t4
6.{t10, t8, t9, t13} ⇒ t12

0.55
0.26

10.75
3.68

218
348

Destination
Network 4

w4.x4.y4.z4/24 7.{t7, t8, t9} ⇒ t10
8.{t4, t8, t9} ⇒ t10

0.43
0.98

4.12
6.6

113
102

Destination
Network 5

w5.x5.y5.z5/24 9.{t10, t7, t8, t9, t13} ⇒ t11
10.{t7, t8, t9, t11, t13} ⇒ t10

0.41
0.82

3.56
3.65

260
131

Table 4.8: Darknet Threat Patterns
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We used Weka [257] to run the Apriori algorithm. In summary, the Apriori al-

gorithm takes the threat table in ARFF file type as input along with the user-defined

parameters including minimum supportmin sup and confidence c, and generates as-

sociation rules. To assess our approach, we experimented with different threats that

were detected and mentioned in Table 4.6. The experimental results are achieved

by employing sequential rule mining techniques for correlating same set of threats.

Consequently, the generated rules can be used to build an associative classification

model for predicting the occurrences of specific threats in real-time darknet traffic.

In general, the threat rules generated by the Apriori algorithm, provided the thresh-

old is kept low, is usually very large. However, we can tune and filter the results to

bring the rules to a manageable level by applying the following steps:

• Choosing a suitable value for the minimum support based on the occurrence

count of the targeted threat. Note that the choice of selecting a minimum

support threshold is inversely proportional to the number of generated threat-

sets.

• Taking into consideration the size of the association rules by specifying the

number of items per threat-set as input to the algorithm.

• Removing threats, prior to the analysis, that do not contribute in information

gain (i.e., a threat that is absent during the analyzed period).

In the current work, we selected a portion of darknet providers network blocks as

the target of attacks. Specifically, we restricted the target of the attacks to five

/24 network blocks. Table 4.8 represents our frequent pattern and association rule

mining results. For confidentiality and privacy matters, we anonymized some sen-

sitive information. This table discloses the analyzed IP blocks, their corresponding

identified threat patterns or association rules, coupled with their lift, confidence and

number of occurrences per day. The latter metric is an indication that the identified
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threat pattern is valid since it frequently occurs per unit of time (a day in our cur-

rent analysis). Up to this point, we have demonstrated that certain darknet threats

are in fact correlated or co-occur when targeting specific network destinations. For

example, consider association rule 1 in Table 4.8. This rule discloses that if we de-

tect threats {t7, t8, t9} in some order in the live darknet data stream, then with 63%

confidence, we can as well expect to predict that threat t10 will follow or occur. Note

that these threats are correlated since the value of the lift is > 1. In the sequel,

we attempt to provide an interpretation to the identified threat patterns. Please

refer to the numbered association rules in Table 4.8 as a reference to the below in-

terpretations. It is worthy to note that such interpretations are solely derived from

the threat patterns and the NIDSs threat descriptions. Hence, we aimed to provide

the most logical and best fit scenario considering the threat association rules. We

believe that one interesting outcome of this work is the ability to provide insights

about threat patterns and interpret real world threat scenarios. Future work in this

area could provide more elaborative interpretations.

The first association rule discloses the following information. A Unix host,

running FreeBSD, attempts to fingerprint a target Voice over IP (VoIP) Session

Initiation Protocol (SIP) server on port 5060. By fingerprinting, the attacker hopes

to retrieve server identification information such as operating system and installed

services. Finally, the attacker leverages the attack by sending an enormous number

of malformed ICMP packets directed towards the SIP server. The latter can be

interpreted as a denial of service attempt. The second association rule reveals the

subsequent information. An exploited Windows host first attempts to ping a target

to check if it is alive. To retrieve more information, the adversary initiates various

traceroute commands. Moreover, the attacker attempts to connect to a certain

undisclosed port. However, he is faced with an “unable to connect” error message.

The latter effort can be explained by an attempt to gain system access. The third

association rule can be interpreted as the following. A typical attacker first performs
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port and host scanning to identify security vulnerabilities and possible ways to

get system access. Sequentially, he can trigger various traceroute commands to

retrieve more information on how to reach his target. Finally, he will attempt to

execute a high priority threat (a buffer overflow exploit) to gain elevated privilege

on the victim’s system. The fourth association rule presents a scanning attack

targeting IP version 6. Specifically, it discloses that an attacker first attempts to

fingerprint a server running IPv6. After receiving a request timed out reply, he

launches a traceroute command to further explore his target’s path. Finally, he

extends his attack by sending a series of ICMP packets. The latter can be interpreted

as a denial of service attempt against the IPv6 server. The fifth association rule

discloses the following information. A Unix host, running FreeBSD as an operating

system, attempts to fingerprint a target server on TCP port 80. By fingerprinting,

the attacker hopes to retrieve the server’s (possibly the web server’s) identification

information such as operating system and installed services. This can be a prelude

to discovering vulnerabilities and sequentially instrumenting a targeted attack. His

scanning request is made from a Flowpoint 2200 DSL router. However, the reply is

a message indicating that such port is unreachable. In an attempt to gather more

information about the target, the attacker consequently launches various traceroute

commands. The sixth association rule can be interpreted as the following. An

attacker aims to target a Microsoft server running as a domain controller. The

server, running Windows 2000 Server, has the Microsoft directory services installed

and running. The attacker first tries pinging the server to see if it is operational.

After receiving a positive confirmation, he elevates his attack by tracing the path to

reach the server. Finally, he leverages his attack by sending an enormous number

of malformed ICMP packets directed towards the domain controller. The seventh

association rule is a series of scanning attempts on UDP port 53, a port normally

dedicated for the domain name service (DNS). A host running Windows 9x generated

a significant number of ICMP echo requests directed towards the server. In an
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attempt to gather more information about the target, the attacker consequently

launches traceroute commands. The eighth association rule unveils the following

information. An attacker launches various traceroute commands from a Unix host.

He leverages his scanning attempts by sequentially targeting TCP port 3389, the

Windows Remote Desktop Protocol (RDP). This event is alarming since it can be

interpreted as an attempt to gain system access especially if the mentioned service

is vulnerable or if its authentication is inadequately configured. The ninth and

tenth association rules are syntactically different, however contextually, they can be

interpreted similarly. They disclose that an exploited host is generating enormous

malformed ICMP packets towards a certain target. This is an indication of an

attempt to launch a denial of service attack against the target victims.

4.5 Related Work

Several studies explored darknet traffic analysis. We can classify these proposals

into two main categories. The first category is based on designing, implementing

and managing darknet platforms, while the second focuses on the analysis of darknet

traffic feeds.

In the following, we describe some of the projects in the area of darknet mon-

itoring systems. In [25], the author presented Honeyd as a framework for the de-

ployment of honeypots using virtual machines. This project runs on unallocated

addresses within various operating systems. Such environments provide numerous

services which aid in detecting and mitigating worms, preventing spam distribution

and alerting about suspicious attacks. Another project is the network telescope

which was proposed in [75] to monitor cyber incidents through the dark address

space. Moreover, the Internet Motion Sensor (IMS) system, a distributed system,

described in [62], reports the network behavior originating from different monitored

IP blocks. Furthermore, Yegneswaran et al. [52] developed Internet Sink (iSink) to
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monitor unused IP address space. The iSink approach was conceived to address

the scalability issue that is related to large address spaces. It incorporates passive

detection and monitor sensors as well as honeynet components.

In the other category, namely darknet analysis, the research in [108] elaborated

on a detailed analysis of the darknet data. Their active and passive analyses assessed

darknet samples from different networks and over a long time period. Another

study [2] has reviewed the last mentioned work to render the state of this Internet

background radiation at that current year. The authors observed significant changes

and pinpointed several factors that are behind these measures. Moreover, Fukuda

et al. [258] studied correlations among darknet traffic for estimating their behaviors

through small address blocks by analyzing a specific type of traffic packets (i.e.,

TCP SYN). There are other research proposals that investigated threats triggered

through darknet such as in [164] where the authors were able to study the Slammer

worm. Moreover, denial of service (DoS) attacks were as well addressed in [30] by

analyzing the replies of DoS attacks from spoofed sources in darknet feeds. Other

studies such as [259] elaborated on scanning events, misconfiguration and other

suspicious activities.

4.6 Summary

In this chapter, we investigated darknet by performing darknet characterization and

threat profiling. We interpreted the output of this step by providing insights as in-

dicators for cyber threat activity. Particularly, the results can be summarized in the

following: Scanning traffic constitutes the majority of darknet traffic; TCP leads

the darknet protocol distribution; SIP contributes as the major darknet applica-

tion layer protocol; IP Class ‘C’ is the most destined class of darknet traffic; TCP

port 445, pertaining to Microsoft active directory service, is the most targeted port.

We presented and discussed darknet-triggered threats. Distinctively, we highlighted
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various threats as well as their severities and elaborated on their nature and conse-

quences. This analysis step revealed three high severity threats, namely, denial of

service attempts, buffer overflow exploits and unsolicited VPN access. Furthermore,

we explored the inter-correlation of such threats, by applying association rule mining

techniques, to build threat association rules. Such work demonstrated that, in fact,

certain darknet threats are correlated when targeting specific network destinations.

Moreover, it provided insights about threat patterns and allowed the interpretation

of threat scenarios. Among the identified threat clusters was one leading to a high

priority buffer overflow exploit. For future work, we intend to provide more cyber

threat insights and build a classification model from the threat association rules to

experiment its predictability features with near real time darknet traffic.

In the next chapter, we will be focusing on the prediction of DDoS events as

well as DDoS cyber campaigns.
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Chapter 5

Prediction Model for DDoS

Activities

After providing some analytics on darknet data and threats, in this chapter, we

generate intelligence in regards to DDoS activities. In fact, we propose a DDoS fore-

casting model to provide significant insights to organizations, security operators and

emergency response teams during and after a targeted DDoS attack. Specifically,

the work strives to predict, within minutes, the attacks’ impact features, namely,

intensity/rate (packets/sec) and size (estimated number of used compromised ma-

chines/bots). The goal is to understand the future short term trend of the ongoing

DDoS attack in terms of those features and thus provide the capability to recognize

the current as well as future similar situations and hence appropriately respond to

the threat. Our analysis employs real darknet data to explore the feasibility of apply-

ing the forecasting model on targeted DDoS attacks and subsequently evaluate the

accuracy of the predictions. To achieve these tasks, our proposed approach leverages

a number of time series fluctuation analysis and forecasting methods. The extracted

inferences from various DDoS case studies exhibit promising accuracy with very low

error rate. Further, our model could lead to a better understanding of the scale and

speed of DDoS attacks and should generate inferences that could be adopted for
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immediate response and hence mitigation as well as accumulated for the purpose of

long-term large-scale DDoS analysis.

When an organization is subject to a DDoS attack, it becomes essential for its

IT security staff to answer the following questions:

• What are the characteristics of a DDoS attack?

• During a DDoS attack, what is the future short term trend (i.e., within min-

utes) of the attack in terms of intensity/rate and size?

• After a DDoS attack, in terms of those impact features, what was the impact

of the attack and what are the lessons learned?

• Is it an isolated DDoS attempt or a campaign of attacks against multiple

victims?

The answers to these questions greatly influence the actions and the resources

that the organization will choose to employ in responding to such malicious activity

for the current incident as well as for future occurrences. For instance, the orga-

nization would often care more about high impact DDoS attacks, those that can

cause serious disruption of a service in a relatively timely manner. If the latter is

observed, the organization can immediately respond and tweak its mitigation meth-

ods to gauge the threat (i.e., forward the attack flow to a specific number of servers

and/or dynamically assign specific firewall rules to handle the flood). This can re-

duce the response time and cost for an organization. Note that, low-rate DDoS

attacks could be as worrisome as high impact ones, which might indicate that the

DDoS attack is attempting to evade detection and at the same time exhaust the vic-

tim with long-lived flows [260]. Moreover, having knowledge about the short term

(i.e., in terms of minutes) predicted impact features of the ongoing DDoS would

provide various inferences to the organization and aid in answering the following
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questions: Will the DDoS increase or decrease in its intensity? Will the attack rate

fluctuates? Will the botnet targeting that specific organization increase? Will the

DDoS cease after few minutes or will it persist for a longer period of time? Further,

the insights extracted from such an analysis on numerous DDoS occurrences target-

ing that organization could generate attack patterns that could be useful for future

mitigation. For example, if the organization observes 5 distinct DDoS attacks in

different time periods where they all possess similar rates, size and prediction pa-

rameters, then it can be inferred that the attacks originate from a single (or at least

similar) botnet and hence point to a suspicious DDoS campaign. At a larger scale,

such analysis aims at providing computer emergency response teams and observers

of cyber events with DDoS trends, taking into consideration the botnet size and

the bots geographic distribution, the victims geographic location, types of DDoS

and bots that could be inferred from rate and intensity distributions, as well as

future short term DDoS trends targeting various global-scale organizational sites.

The latter outcome could be used for immediate response and alerting for mitigation

purposes as well as for long term large-scale DDoS analysis.

In this context, this chapter’s contributions are as follows:

• Proposing and adopting a systematic approach for inferring DDoS activities,

testing for predictability of DDoS traffic and applying prediction models.

• Leveraging various time series analysis and forecasting methods, including,

detrended fluctuation analysis, moving average, weighted moving average, ex-

ponential smoothing and linear regression.

• Characterizing and predicting DDoS attacks’ impact features, namely, inten-

sity/rate and size.

• Proposing a clustering approach to infer similarities among attack traces for

DDoS campaign detection.
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• Evaluating the proposed approach using real DDoS traffic.

5.1 Attack Prediction

This section presents and discusses various aspects of our forecasting model. The

main components of our proposed approach is depicted in Figure 5.1.

Read Time Series Data
of DDoS Attack

Apply Prediction Techniques 

Present Prediction Results

Correlated? 

Yes

Read Darknet Data

Extract Backscattered Packets 

Infer DDoS Activities

DDoS Attack?

Yes

No

Extract Session Flows 

No

Start

End

Test Attack Time Series Data for 
Predictabil ity

Fingerprint Botnet 

Figure 5.1: Flow Chart of the Proposed Approach

In short, the approach is rendered by extracting backscattered data and ses-

sion flows from darknet traffic. Subsequently, DDoS activities are inferred and

consequently tested for predictability. Finally, prediction techniques are applied on

DDoS traffic, when applicable. The proposed approach is detailed next.
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5.1.1 Extracting Backscattered Packets

In order to extract backscattered packets, we adopt the technique from [2] that

relies on flags in packet headers, such as TCP SYN+ACK, RST, RST+ACK, and

ACK. However, this technique might cause misconfiguration as well as scanning

probes (i.e., SYN/ACK Scan) to co-occur within the backscattered packets. In

order to filter out the misconfiguration, we use a simple metric that records the

average number of sources per destination darknet address. This metric should be

significantly larger for misconfiguration than scanning traffic [261]. The scanning

packets are filtered out in the next step.

5.1.2 Extracting Session Flows

In order to filter out the scanning activities, we split the connections into separate

session flows, each of which consists of a unique source and destination IP/port

pair. The rationale for this is that DDoS attempts possess a much greater number

of packets sent to one destination (i.e., flood) whereas portsweeps scanners have one

or few attempts towards one destination (i.e., probe).

5.1.3 Inferring DDoS Activities

We next aim to confirm that all the extracted sessions in fact reflect real DDoS

attempts. To accomplish this, we employ a modified version of the DDoS detection

parameters from [262] to label a session as a single DoS attack. Algorithm 1 lists

our detection mechanism.

We decided to leverage the latter work since it is directly applicable to our

work, which is based on a flow-based approach and leverages backscattered traffic

to infer DoS attacks from darknet traffic. We proceed by merging all the previously

extracted sessions that have the same source IP (i.e., victim) to extract the DDoS

attack.
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Algorithm 1 DDoS Detection Engine

1: In the algorithm:
2: Each flow f contains packet count (pkt cnt) and rate (rate)

Tw : Time Window
p th: Packet Threshold
r th: Rate Threshold
Tn: Time of packet number n in a flow
pkt : Packet

3: Input: A set of darknet flows F where each f in F is composed of a pair of
<source IP, destination IP> leveraging a series of consecutive packets that share
the same source IP address.

4: Output: DDoS attack flows
5:

6: for each f in F do
7: attack flag = 0
8: pkt cnt = 0
9: T1 = pkt gettime(1)
10: Tf = T1 + Tw
11: while pkt in f do
12: Tn= pkt gettime()
13: if Tn < Tf then
14: pkt cnt++
15: end if
16: end while
17: rate = pkt cnt

Tw

18: if pkt cnt > p th & rate > r th then
19: attack flag = 1
20: end if
21: end for

112



5.1.4 Testing for Predictability

A time series is a sequence of data values that are measured at successive points in

time and spaced at uniform time intervals [263]. In order to predict DoS features,

we aim to test if the time series of DDoS flows are first correlated. Otherwise, our

prediction model would be irrelevant. In order to accomplish this, we statistically

test for predictability in such time series using the Detrended Fluctuation Analysis

(DFA) technique. DFA was first proposed in [264] and has since been used in many

research areas to study signals correlation. The DFA technique is summarized next.

The DFA method of characterizing a non-stationary time series is based on the

root mean square analysis of a random walk. DFA is advantageous in comparison

with other methods such as spectral analysis [265] and Hurst analysis [266] since

it permits the detection of long range correlations embedded in a seemingly non-

stationary time series. It avoids as well the spurious detection of apparent long-range

correlations that are an artifact of non-stationarity. Another advantage of DFA is

that it produces results that are independent of the effect of the trend [267]. Last

but not least, this technique is applicable to darknet traffic [111].

Given a traffic time series, the following steps need to be applied to implement

DFA:

• Integrate the time series. The time series of length N is integrated by applying

y(k) =
k∑

i=1

(B(i)− Bave) (5.1)

where B(i) is the ith interval and Bave is the average interval.

• Divide the time series into “boxes” (i.e., bin size) of length n.

• In each box, perform a least-squares polynomial fit of order p. The y coordinate

of the straight line segments is denoted by yn(k).
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• In each box, detrend the integrated time series, y(k), by subtracting the local

trend, yn(k). The root-mean-square fluctuation of this integrated and de-

trended time series is calculated by

F (n) =

√√√√ 1

N

N∑
k=1

(y(k)− yn(k))2 (5.2)

• Repeat this procedure for different box sizes (i.e., time scales) n

The output of the DFA procedure is a relationship F (n), the average fluctuation as a

function of box size, and the box size n. Typically, F (n) will increase with box size n.

A linear relationship on a log-log graph indicates the presence of scaling; statistical

self-affinity expressed as F (n) ∼ nα. Under such conditions, the fluctuations can

be characterized by a scaling exponent α, which is the slope of the line relating

logF (n) to log(n). The scaling exponent α can take the following values, disclosing

the “correlation status” of the traffic time series:

• α < 0.5: anti-correlated

• α ≈ 0.5: uncorrelated or white noise

• α > 0.5: correlated

• α ≈ 1: 1/f -noise or pink noise

• α > 1: non-stationary, random walk like, unbounded

• α ≈ 1.5: Brownian noise

In our work, if the application of DFA on the DDoS traffic time series outputs a

“correlated” status, then we assert that it is predictable; else, we extract another

DDoS flow and re-test it for predictability.
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5.1.5 Predicting DDoS Attacks

Finally, to perform the predictions, we apply different types of forecasting tech-

niques, namely, moving average, weighted moving average, exponential smoothing

and linear regression. We have selected to leverage these techniques instead of other

complex well-known models such as ARIMA and GARCH [268] since the latter re-

quire long-term (weekly, monthly, yearly, etc.) seasonal time series data, which is

not true in our case that deals with short-term DDoS traffic. The selected methods

are briefed next.

Moving Average (MA)

The single parameter of the model is estimated as the average of the previous x data

points at time t in the time series. The MA is given by:

x̂t+1 =
1

k
∗ (xt + xt−1 + ...+ xt−k−1) (5.3)

where k is the smoothing window or period. Note that the forecast in this

technique should not begin until the specified previous data are available.

Weighted Moving Average (WMA)

This technique is based on a numeric value known as the weight. In general, a

WMA is more responsive to change in the time series data than a simple MA. The

computation of the WMA estimated temporal average is given by [269]:

x̂t+1 =
wt−kxt−k + ...+ wtxt

h
(5.4)

where k is the chosen window size and h is the sum of the temporal weight,

h = wt−k + ...+ wt. In general, to obtain better results, the highest weight is given

to the most recent periods.
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Exponential Smoothing (ES)

This technique calculates the parameter of the estimated prediction value b as the

weighted average of the last observation and the last estimate. The estimated value

is given by:

x̂t+1 = αxt + (1− α)x̂t (5.5)

where α is the smoothing factor and has a value between [0,1].

Linear Regression (LR)

This technique performs statistical analysis that assesses the association between two

variables. This method is used to pinpoint the relationship among these variables.

A simple LR is given by:

LR(y) = a+ bx (5.6)

where x and y are the variables, b is the slope of the regression line, a is the

intercept point of the regression line and the y-axis.

Two main elements characterize this model, namely, the slope and the inter-

cept, given by:

Slope(b) =
N

∑
XY −∑

X
∑

Y

N
∑

X2 − (
∑

X)2
(5.7)

Intercept(a) =

∑
Y − b

∑
X

N
(5.8)

where N is the number of values or elements, X is the first score and Y is

the second score. The slope describes the incline or grade of the line whereas the

intercept is the point where the graph of a function intersects with the y-axis of the

coordinate scheme.
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Finally, to evaluate the performance of the prediction methods, we compute

the absolute prediction error. The equation of the absolute prediction error is given

by:

r(t) =
|X̂i(t)−Xi(t)|

Xi(t)
(5.9)

This error metric is defined as the absolute difference of the predicted value

from the actual value divided by the actual value. The latter is a de-facto metric

when computing the performance of a prediction model [270, 271].

Note that in our prediction, for the MA and the WMA algorithms, we run

a solver [272] to automatically obtain the weight values that produces a relatively

better prediction results. Furthermore, we adopt a time window that is equivalent

to three data points in the time series. We believe this provides a good estimate for

such models as also demonstrated in [273]. Future work would extend such analysis

by experimenting with different time window sizes. Furthermore, as far as the ES

algorithm is concerned, we again run a solver [272] to automatically choose the

best value of α that optimizes the prediction error rate. We refer interested readers

to [270,274] for more details on the above mentioned prediction techniques.

5.1.6 Empirical Evaluation

We abide and closely follow the steps of our proposed approach that were discussed in

Section 5.1 to present three real case studies targeting three different servers. The

case studies respectively consist of TCP SYN flooding targeting an HTTP (web)

server, TCP SYN flooding targeting a Domain Name System (DNS) and an ICMP

(ping) flooding. The three case studies are summarized in Table 5.1.

The table shows the analyzed duration of the attack (in seconds), the attack’s

intensity in terms of number of generated packets, its average rate (packets/sec), its

DFA value and its size in terms of number of used compromised machines/bots. In
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Case Study Analyzed
Attack
Duration
(second)

Intensity
(packet)

Rate
(pps)

DFA
Value

Size of
Spoofed
IPs

TCP SYN Flooding (HTTP) 3194 1799228 563.31 0.91 24

TCP SYN Flooding (DNS) 3550 29016 8.17 0.93 206

ICMP Flooding 3599 3577 1.00 0.67 1

Table 5.1: Summary of the Analyzed DDoS Case Studies

regards to our dataset, we leverage the same source of darknet data from our trusted

third party. In terms of DFA computation, we utilize the DFA MATLAB code

found in [275] and used 1ms as the bin size. Further, when applying the forecasting

techniques, for the purpose of error calculation, we use two thirds (66.66%) of the

DDoS traffic time series for training and one third (33.33%) for testing. It is also

noteworthy to mention that when performing the prediction analysis, we chose a

time series with bin size equal to one minute. We argue that such a choice is

rational and should provide enough resources (i.e., time) to the organization under

attack to act upon the observed values. The case studies are elaborated next.

TCP SYN Flooding on an HTTP Server

This case study refers to a DDoS TCP SYN flooding targeting an HTTP web server.

From Table 5.1, we notice that this attack lasted 53 minutes, generated around 1.8

million TCP SYN packets, with an average of 560 packets per second from 24 unique

spoofed IPs (i.e., bots). The value of the rate of the attack demonstrates the severity

of this DDoS attack. Moreover, Figures 5.2 and 5.3 demonstrates the application of

the forecasting techniques.

Note that, we attempt to predict this DDoS since its corresponding DFA result

was shown to be “correlated” with a value equals to 0.91 as stated in Section 5.1.4).

Figure 5.2 illustrates the attack’s intensity distribution with its corresponding fore-

casting techniques. It is shown that the attack peaks with around 175 thousand
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Figure 5.2: TCP SYN Flooding on an HTTP Server - Intensity Prediction

Figure 5.3: TCP SYN Flooding on an HTTP Server - Size Prediction

packets at the 46th minute. The predicted values (within the future 3 minutes) of

such distribution reveal that the attack will decrease in intensity and fluctuates be-

tween 9000 and 3500 packets. On the other hand, Figure 5.3 illustrates the attack’s

size in terms of number of used spoofed IPs. It is shown that the number of spoofed

IPs peak to 16 in the 48th minute. Similar to the intensity, it is shown from the pre-

diction techniques that the size will as well decrease, hinting that the DDoS might

soon diminish in size. The absolute prediction error of the forecasting techniques

for this DDoS case study is summarized in Table 5.2.

We can notice that several techniques for both impact features recorded low

error rates. Further, the exponential smoothing algorithm was best in predicting
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Prediction Techniques

MA WMA ES LR

Intensity 0.57 0.39 0.19 0.86

Size 0.70 0.53 1.34 0.22

Table 5.2: HTTP-based TCP SYN Flooding - Absolute Prediction Error (%)

the intensity while the linear regression was best in predicting the size of the attack.

This case study allows the organization whose web server is under a targeted DDoS

to gain insight in terms of the current and future short term trend of the ongoing

attack in terms of the defined attack impact features. Moreover, assuming that the

organization modified its mitigation methods before predicting the future impact

distributions, we reveal that such modifications are effective.

TCP SYN Flooding on a DNS Server

This case study refers to a DDoS TCP SYN flooding targeting a DNS server. From

Table 5.1, we notice that this attack lasted 59 minutes, generated around 29 thou-

sand TCP SYN packets, with an average of 8 packets per second from 206 unique

spoofed IPs (i.e., bots). Although the size of this DDoS attack is larger than the

first case study, however, its intensity in terms of the generated packets and hence

rate is significantly lower.

Figures 5.4 and 5.5 depict the characterization in addition to demonstrating

the application of the forecasting techniques. We also predicted this DDoS attack

since its corresponding DFA result was shown to be “correlated” with a value equals

to 0.93. Figure 5.4 illustrates the attack’s intensity and prediction distributions. It is

shown that the attack peaks around 1600 packets at the 19th minute. The predicted

values of such distribution shows insights of increase in the attacks intensity. On

the other hand, Figure 5.5 reveals the attack’s size in terms of number of used

compromised machines/bots. It is shown that the number of spoofed IPs peaks to
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Figure 5.4: TCP SYN Flooding on a DNS Server - Intensity Prediction

Figure 5.5: TCP SYN Flooding on a DNS Server - Size Prediction

12 in the 45th minute. Furthermore, it is shown from the prediction models that the

attack size will either stay constant or slightly decrease.

The absolute prediction error of the forecasting techniques for this DDoS case

study is summarized in Table 5.3.

We notice that the linear regression poorly performs with regards to this case

study. Moreover, the exponential smoothing algorithm was best in predicting both

the intensity and the size. This case study allows the organization whose DNS server

is under a DDoS attack to be alerted that the attack’s intensity might increase. This
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Prediction Techniques

MA WMA ES LR

Intensity 12.46 5.24 2.75 35.71

Size 0.51 0.37 0.16 0.72

Table 5.3: DNS-based TCP SYN Flooding - Absolute Prediction Error (%)

provides the organization the capability to comprehend the situation and hence

adaptively respond to the threat.

Figure 5.6: ICMP (ping) Flooding - Intensity Prediction

ICMP (ping) Flooding

This case study refers to a DoS ICMP (ping) flooding targeting a server. The major

difference between this attack and the former case studies is that this attack is

generated from only one machine ( i.e., not distributed) and it could be attempting

to evade detection by using a relatively low attack rate. Further, its DFA result

shows signs of strong correlation (the DFA scaling exponent α = 0.67) in its attack

signal.

This is confirmed in Figure 5.6 where the intensity distribution fluctuates

around 60 packets. From the prediction techniques, we can observe that the attack’s
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Prediction Techniques

MA WMA ES LR

Intensity 0.13 0.13 0.12 0.13

Table 5.4: ICMP (ping) Flooding - Absolute Prediction Error (%)

intensity will continue to be close to 60 packets or slightly increase. The summary

of the result is shown in Table 5.4. Moreover, the attack’s correlation and intensity

features allow the organization whose server is under this type of DoS attack to infer

that the attack is relatively of low impact and non-distributed and hence current

mitigation methods will be sufficient.

5.2 Predicting Campaigns Targeting Multi-victims

In the previous sections, we elaborated on the components of the systematic ap-

proach for inferring DDoS activities targeting a unique organization, testing for

predictability of such DDoS traffic and subsequently applying the prediction meth-

ods. In this section, we extend the model by proposing a clustering approach to infer

DDoS campaigns that target multiple victims. The aim is to predict DDoS cam-

paigns. Moreover, this permits the fingerprinting of the nature of such campaigns.

For example, it could be identified that a specific DDoS campaign is specialized

in targeting financial institutions while another campaign is focused on targeting

various information communication technology infrastructures. Further, such clus-

tering approach allows the elaboration on the actual scope of the DDoS campaign to

provide cyber security situational awareness; how large is the campaign and what is

its employed rates, when attacking the various victims. Additionally, the proposed

approach could be leveraged to predict the campaign’s features in terms of rate and

number of involved machines.
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5.2.1 Clustering of DDoS Campaigns

In this section, our approach employs the following statistical-based mechanism.

First, backscattered sessions are extracted as previously discussed in Section 5.1.

Second, the notion of fuzzy hashing [276] between the different sessions is applied.

Fuzzy hashing is advantageous in comparison with typical hashing as it can provide

a percentage of similarity between two traffic samples rather than producing a null

value if the samples are different. This popular technique is derived from the digital

forensics research field and is typically applied on files or images [276, 277]. Our

approach explores the capabilities of this technique on backscattered DDoS traffic.

We select the sessions that demonstrate at least 20% similarity. We concur that this

threshold is a reasonable starting point and aids in reducing false negatives. Third,

from those sessions, we employ two statistical tests, namely, the Euclidean and the

Kolmogorov-Smirnov tests [278] to measure the distance between the latter selected

sessions. We select those sessions that minimize the statistical distance and overlap

after executing both tests. The rationale of the latter approach stems from the

need to cluster the sessions belonging to multiple victims that share similar traffic

behavior while minimizing the false positives by confirming such similarity using

both tests. Note that, we hereafter refer to the use of the previous two techniques

as the fusion technique. The outcome of the proposed approach are clustered diverse

victims that are inferred to be the target of the same DDoS campaign.

5.2.2 Empirical Evaluation

In this section, we present the empirical evaluation results. We employ the DDoS

campaign clustering model as discussed in the previous section to demonstrate how

multiple victims could be modeled as being the target of the same campaign.
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TCP SYN Flooding on Multiple HTTP Servers

To demonstrate the effectiveness of the approach, we experiment with a one day

sample retrieved from our darknet data set. We extract 680 backscattered DDoS

sessions and apply fuzzy hashing between the sessions, by leveraging deeptoad1, a

fuzzy hashing implementation. The outcome of this operation is depicted in Fig-

ure 5.7, where the victims are represented by round circles while directed arrows

illustrate how the various victims were shown to be statistically close to other tar-

geted victims. It is important to note that we anonymize the real identity of the

victims due to sensitivity and legal reasons. Subsequently, the Euclidean and the

Kolmogorov-Smirnov tests are executed to exactly pinpoint and cluster the victims

that demonstrate significant traffic similarity. Figure 5.8 shows such result while

Table 5.5 summarizes the outcome of the proposed DDoS campaign clustering ap-

proach. From Figure 5.8, one can notice the formation of root nodes, advocating

that the approach is successful in clustering various victims that are the target of

the same DDoS campaign.

Figure 5.7: Clustered Victims Through Fuzzy Hashing

1https://code.google.com/p/deeptoad/
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Figure 5.8: Clustered Victims Through the Fusion Technique

Technique Unique
Campaign
Count

Campaign
of 2
Victim
Machines

Campaign
of 3
Victim
Machines

Campaign
of 4
Victim
Machines

Campaign
of 5
Victim
Machines

Campaign
of 6
Victim
Machines

Campaign
of 125
Victim
Machines

Euclidean 16 6 2 3 3 1 1

KS 16 6 2 3 2 2 1

Fusion 13 6 1 2 2 1 1

Table 5.5: Summary of the DDoS Campaign Clustering Approach

In general, the approach yielded, for one day data set, 13 unique campaigns

where each campaign clusters a number of victims ranging from 2 to 125 targets.

Recall that the fusion technique resembles the execution and overlap of the Euclidean

and the Kolmogorov-Smirnov statistical tests.

We proceed by attempting to predict the impact features, namely, intensity

and size, of one of the previously inferred DDoS campaigns. We select the last

campaign of Table 5.5 since it targeted the most victims.

This case study refers to a campaign of DDoS TCP SYN flooding targeting

various HTTP servers related to 16 victim organizations. From Table 5.6, we notice

that this campaign lasted almost one day and generated around 650 thousand TCP

SYN packets, with an average of 7 packets per second from 92296 unique spoofed IPs

126



Case
Study

Victim Analyzed
Attack
Duration
(second)

Intensity
(packet)

Average
Rate
(pps)

DFA
Value

Size of
Spoofed
IPs

TCP SYN
Flooding
(HTTP)

125 85322 649299 7.61 0.81 92296

Table 5.6: Summary of the Analyzed DDoS Campaign Case Study

(i.e., bots). Further, Figures 5.9 and 5.10 depict the characterization and demon-

strate the application of the forecasting techniques. We also predicted this DDoS

attack since its corresponding DFA result was shown to be “correlated” with a value

of 0.81. Figure 5.9 illustrates the attack’s intensity and prediction distributions. It

is shown that the attack peaks around 8000 packets at the 47th minute. The pre-

dicted values of such distribution shows insights of decrease in the attacks intensity.

On the other hand, Figure 5.10 reveals the attack’s size in terms of number of used

compromised machines/bots. It is shown that the number of spoofed IPs peaks to

3100 in the 10th minute. Furthermore, it is shown from the prediction models that

the attack size will stay constant for some time and then decreases. The absolute

prediction error of the forecasting techniques for this DDoS campaign case study is

summarized in Table 5.7.

Notice that the linear regression poorly performs with regards to this case

study. Moreover, the exponential smoothing algorithm was best in predicting both

the intensity and the size.

Prediction Techniques

MA WMA ES LR

Intensity 1.27 1.51 0.09 2.16

Size 1.26 1.11 0.09 2.14

Table 5.7: TCP SYN Flooding on Multiple HTTP Servers - Prediction Error (%)
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Figure 5.9: TCP SYN Flooding on Multiple HTTP Servers - Intensity Prediction

Figure 5.10: TCP SYN Flooding on Multiple HTTP Servers - Size Prediction

It should be noted that the generated inferences from the above case studies

aim to better understand the scale and rate of DDoS attacks that could be adopted

by organizations for immediate response and hence mitigation as well as accumu-

lated by security operators, emergency response teams and observers of large-scale

Internet DDoS events for the purpose of long term large-scale DDoS analysis, clus-

tering and correlation.
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5.3 Related Work

In this section, we provide a review of some relevant literature work in the area of

threat prediction. In [279], the authors propose a method for threat prediction based

on security events using a security monitoring system. Their approach consists of

methods to collect and pre-treat security monitoring events, extract threads and

sessions, create attack scenarios through correlation analysis, predict intrusions and

express the analytical results. The authors evaluate the effectiveness of their predic-

tion model by leveraging real security monitoring events. Dagon et al. [179] adopt

a model to accurately predict botnet population growth. The authors use diurnal

shaping functions to capture regional variations in online vulnerable populations.

They state that since response times for malware outbreaks is measured in hours,

the ability to predict short-term propagation dynamics permit resource allocation

in a more effective and a suitable manner. The authors use empirical data from bot-

nets collected at a sinkhole to evaluate their analytical model. Moreover, Fachkha et

al. [142] present and discuss various darknet-triggered threats and their correspond-

ing severity level. Furthermore, they explore the inter-correlation of such threats,

by applying association rule mining techniques, to build threat association rules.

Their work demonstrate that in fact certain darknet threats are correlated when

targeting specific network destinations. Moreover, it provides insights about threat

patterns and allows the building of a classification model for prediction purposes.

In another work, Qibo et al. [280] propose an approach to detect and predict DoS

SYN flooding attacks using non-parametric cumulative sum algorithm along with

an ARIMA model. Instead of managing all real-time ongoing traffic on the network,

the approach only monitors SYN packets to predict the attack in the near future. To

perform the prediction, the authors propose the auto-regressive integrated moving

average model. The authors also run some simulations to validate the effectiveness

of the approach. In [281], the authors propose a forecasting mechanism called FORE

(FOrecasting using REgression analysis) through a real-time analysis of randomness
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in network traffic. According to the authors, FORE can respond against unknown

worms 1.8 times faster than other detection mechanisms. Evaluation results using

real malware traffic demonstrate the efficiency of the proposed mechanism, including

its ability to predict worm behaviors starting from 0.03% infection rate.

Most of the above discussed related work assumes that the threat traffic that

needs to be predicted is in fact predictable. We argue that such assumption, with-

out essential validation, might result in erroneous forecasting results, regardless of

which forecasting approach has been employed. In contrary, in our work, we first

statistically test for predictability before attempting to forecast. Additionally, we

state that our work in terms of DDoS impact features characterization and predic-

tion is distinctive since the leveraged DDoS inference algorithm is highly accurate

and established [262] and does not depend solely on SYN packets. Moreover, our

work has wide-scope benefits for security operators, security response teams as well

as specific organizations for the short term as well as for the long term large-scale

DDoS analysis. Moreover, our proposed approach is designed to effectively work on

near real time data. Last but not least, for empirical evaluation purposes, we utilize

a significant amount of real network traffic.

5.4 Summary

In Chapter 5, we primarily proposed an approach that is rendered by a DDoS in-

ference and forecasting model. The aim was to provide the organization under

attack the capability to comprehend the situation and hence adaptively respond

to the threat. Second, the work proposed a DDoS campaign clustering approach

that captures the similarity between backscattered sessions. The goal was to cluster

various victims that are targeted by the same DDoS campaign. We characterized

and predicted, within minutes, the attacks’ impact features, namely, intensity/rate

(packets/sec) and size (number of used compromised machines/bots). Our proposed
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approaches leveraged real darknet data to infer DDoS activities, test for predictabil-

ity of DDoS traffic and apply prediction techniques, when applicable. Empirical

evaluations presented several attack case studies to demonstrate possible extracted

insights and inferences. For future work, we intend to experiment with more complex

forecasting methods that can operate on probability or graph theory and long-term

bases as well as implementing our proposed approach in a real-time fashion.

In the next chapter, we attempt to tackle the problem of fingerprinting ampli-

fication attacks.
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Chapter 6

Analysis of Reflection (DRDoS)

Attacks

In this chapter, we describe the design and implementation of a novel approach to

infer reflection attacks through darknet. In order to facilitate the understanding of

our approach, we primarily provide some basic concepts related to the mechanism

of reflection DDoS attacks, and inferred darknet queries.

DRDoS Attacks: DNS Scenario

Amplification is a well known practice of a DDoS attack, in which malicious users

abuse open amplifiers to bombard a victim with reply traffic [282]. The amplification

technique consists of an invader directing queries to an amplifier having the source

IP spoofed to be the victim’s address. Subsequently, all server responses will be sent

to the targeted victim. Amplification DRDoS attacks can abuse several services [32].

For instance, in a DNS scenario, malicious users will request domains that cover a

large zone to increase the amplification factor. In this context, in order to have a

high impact on the victim, the attackers use DNS requests of type ANY to return all

possible known information to the victim, and hence increase the amplification of

the attack. Moreover, in order to increase the size of the attack with little effort,

attackers use botnets (i.e., campaigns) [283] to synchronize an army of bots and
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order them to send requests. Based on such concepts, Figure 6.1 depicts a basic

DNS amplification attack with recursive DNS. In the first two steps, the attacker
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Figure 6.1: DNS-based DRDoS Scenario

uses a botnet to generate spoofed DNS lookup requests to the Internet. In steps 3 to

7, the internal and external DNS servers collaborate in order to provide an answer

to the requester. Finally, in steps 8 and 9, the amplified replies congest the victim’s

computer and network resources with a large flood of traffic.

Queries Found on Darknet

On darknet, we can observe a significant number of queries that could be sent by

the following sources:

• Attacker Spoofing the Victim’s IP: In this case, the attacker sends spoofed
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queries on the Internet address space using the victim’s IP address. All replies

from the open resolvers will bounce back towards the victim.

• Compromised Victim: In this case, the attacker uses the victim’s machine to

send queries. The attacker might use several techniques to control the victim’s

machine, including malware infection and/or vulnerability exploitation. This

scenario does not involve spoofed queries.

• Scanner: In this scenario, the attacker scans the Internet to infer the locations

of open amplifiers. This task requires collecting information from the reply

packets and hence, a non-spoofed address is used by the scanners.

• Others: Other hosts may include firewalls to reduce the impact of the attack

or misconfigured devices, etc.

In our work, we assert that high speed queries [282] will be sent from an attacker

spoofing the victim’s IP and/or compromised victim but not from a scanner. In

other words, scanners might send queries to the Internet but with a low-speed rate

to avoid receiving the amplified flood of replies. It is noteworthy to mention that our

investigation in the next section includes DNS amplification analysis only. However,

our approach identifies various attack types.

6.1 Inferring Internet Reflection Activities

After providing a background information on some reflection attacks found on dark-

net, we elaborate in this section on our novel approach to infer and characterize

Internet-scale DNS DRDoS attacks by leveraging the darknet space. Complemen-

tary to the pioneer work on inferring DDoS activities using darknet [262], this work

shows that we can extract DDoS activities without relying on backscattered anal-

ysis. The aim of this work is to extract cyber security intelligence related to DR-

DoS activities such as intensity, rate and geographic location in addition to various
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network-layer and flow-based insights. To achieve this task, the proposed approach

exploits certain DDoS parameters to detect the attacks, and the expectation maxi-

mization and k-means clustering techniques to identify campaigns of DRDoS attacks.

We empirically evaluate the proposed approach using 1.44 TB of real darknet data

collected from a /13 address space during a recent period of several months. Our

analysis reveals that the approach was successful in inferring significant DNS am-

plification DRDoS activities, including the recent prominent attack that targeted

one of the largest anti-spam organizations [211]. Moreover, the analysis disclosed

the mechanism of such DNS amplification attacks. Further, the results uncover

high-speed and stealthy attempts that were never previously documented. The ex-

tracted insights from various validated DNS DRDoS case studies lead to a better

understanding of the nature and scale of this threat and can generate inferences that

could contribute in detecting, preventing, assessing, mitigating and even attributing

DRDoS activities.

In this context, we tackle the following questions:

1. How to infer large-scale DNS-based DRDoS activities?

2. What are the characteristics of DNS amplification DRDoS attacks?

3. What inferences can we extract from analyzing DNS DRDoS traces?

Answering those questions would aid computer security response teams, law

enforcement agencies and governments to build a darknet-based central infrastruc-

ture to scrutinize DNS-based amplification traffic in order to contribute in under-

standing, detecting, preventing, assessing, mitigating and even attributing DRDoS

attacks.

In this work, we frame our contributions as follows:

• Proposing a systematic flow-based approach for inferring DNS amplification

DDoS activities by leveraging DNS queries to darknet.
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• Characterizing the inferred DDoS threats during several months period.

• Applying clustering and similarity algorithms in an attempt to identify cam-

paigns of DNS reflection DDoS attacks.

Next, we elaborate on our proposed approach.

6.1.1 Proposed Approach

This section presents our proposed approach that aims at generating darknet flows

and inferring DNS-based DRDoS activities by leveraging darknet data. The ap-

proach exploits the idea of analyzing DNS queries that target the darknet that were

originally intended by the attacker to reach Internet open DNS resolvers [31, 32].

The approach takes as input darknet traffic and outputs inferred DNS amplification

DRDoS insights. It is based on several components, namely, the flows generation,

the detection, the rate classification and the clustering components. We discuss

these components in what follows.

Flow Generation

The flow generation component takes as input darknet traffic to produce flows of

traffic on a daily basis. A flow is defined as a series of consecutive packets sharing the

same source IP address targeting darknet addresses. In order to generate such flow,

we primarily collect network traces that consist of a unique source and destination

IP pair, and then merge all flows that belong to the same source IP.

Detection Component

The detection component takes as input darknet traffic and outputs DNS-based

DRDoS flows. To achieve the detection task, we base our detection component on

analyzing DNS queries targeting darknet addresses. These DNS queries are attempts

towards port 53. In order to detect DNS amplification DDoS, we built our approach
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in accordance with the parameters of Table 6.1. We describe below each of those

parameters.

Parameter Value

Packet Count > 21 (experimental)
> 29 (practical)

Targeted IPs > 29

DNS Query Type ANY

Requested Domain Found in Root DNS DB

Table 6.1: DNS DRDoS Attacks Identification Parameters

• Packet Count: The packet count parameter defines the minimum number of

packets sent per one source to our /13 darknet space. This parameter is useful

to extract DDoS attacks with high impact in addition to providing an estimate

of its scale. For instance, a flow that possesses thousands of packets sent to

darknet is larger and more effective than a flow with 50 packets. In order to

estimate a suitable packet count parameter for the attack flows, we execute

an experiment, as shown in Figure 6.2. The experiment is based on inferred

darknet DDoS attacks and the investigation of their corresponding number of

packets. For such attack flows, we fix the number of packets as perceived by

the telescope and compute the number of attack flows that have at least such

a number of packets. It is evident that below 21 packets, the attack flows will

dramatically increase, while above that number, such flows will not decrease

sharply. Thus, in this work, we decided to choose 21 packets as the packet

count parameter for a DDoS attack flow. We assert that this threshold is a

conservative number between false positives and false negatives. It is very

significant to note that in [262], the authors also perform such experiment to

extract DDoS attack flows; they found that 25 packets are suitable in their

case, which was in 2006. We postulate that the slight decrease in packet
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threshold that we found is due to the recent rise of stealthy attacks that

employ a lower number of packets per unit of time to achieve their attack

while attempting to avoid detection.

Figure 6.2: Packet Count Parameter Estimation

• Targeted IPs: Inspecting the number of targeted IPs verifies that the packets

sent are not targeting only one IP address but distinct ones. Moreover, this

permits the filtering of misconfiguration traffic (i.e., a host sending packets

to only 1 unused IP address) and identifies the scanning mechanism for open

DNS resolvers. To approximate a threshold for the number of targeted IPs,

we semi-automatically (i.e., using a script and manual analysis and observa-

tion) investigated 1000 random DDoS attacks that were inferred by analyzing

darknet using the open source network intrusion detection system Snort. The

average of all those attacks were shown to target at least 29 different IPs.

Thus, in this work, we assert that the inferred DDoS attempts involve at least

29 distinct open DNS resolvers. This is based on the realistic assumption that

an attempt of contacting at least 29 unused IP addresses out of half a million

darknet IP addresses in order to amplify an attack has a similar intention to

contacting at least 29 distinct open resolvers on the Internet space. Please note
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that imposed by the latter, and in practice, one should adopt the minimum

packet count to be at least 29 packets.

• DNS Query Type: One of the major strengths of DNS DDoS attacks is

rendered by their amplification factor. In the majority of DNS amplification

DDoS attacks, DNS query type ANY is used [282]. This type of DNS query

returns all known information about a DNS zone in a single request to the

victim. This technique is an attempt to amplify the attack. In this work, we

impose that all DNS amplification DDoS traces have ANY as the DNS query

type.

• Requested Domain: DNS amplification attempts are known to request

root and Top Level Domain (TLD) name server operators [284]. We built

a database containing a list of all known root and TLD domains. In gen-

eral, these domains contain several DNS records. Therefore, DNS ANY queries

targeting these servers trigger a large (amplified) reply. In this work, we cor-

roborate that all DNS amplification DDoS activities request domains from the

assembled database.

Note that we could have also added other parameters such as attack-duration

and packet-rate to our detection component. However, we avoid using time-based

constraints; we have detected some flash attempts [166] that targeted thousands of

distinct unused IPs within seconds and other stealthy scanning activities [285] that

persisted for several weeks.

In a nutshell, our detection component labels a flow of traffic as a DNS ampli-

fication DDoS attack if it has sent at least 21 DNS queries of type ANY to at least 29

distinct unused dark IP addresses. Further, the flow must have requested domains

that exist in root and TLD database.
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Rate Classification Component

The rate of the attack is one of the major characteristics of DDoS activities [262].

After inferring DNS amplification flows, we noticed the existence of a large deviation

among DNS amplification DDoS attack rates. For example, some flow rates reached

more than 50 thousand packets per second (pps) whereas others were below 1 pps.

Therefore, in order to better understand this large deviation and to group attacks

per attack rates, we executed a rate classification exercise based on the values found

in Table 6.2. Please note that in order to compute the rate as well as the other

parameters in Table 6.1, we employ a time-out metric, which is the case when a

source in a particular flow ceases to send packets towards the network telescope.

Attack Rate Category Value (pps)

Low rate ≤ 0.5

Medium 0.5 < rate < 4700

High rate ≥ 4700

Table 6.2: Classification per Attack Rate

Going back to the rate classification procedure, the three attack rate categories

are explained as follows:

• Low Attack Rate: To differentiate between low and medium attacks, we have

executed an experiment with a number of confirmed attack flows as depicted in

Figure 6.3. We also follow a conservative approach by choosing 0.5 pps as the

threshold. Please note that the latter is only used to cluster the attacks per

rate and thus is not employed in the detection component that was discussed

in the previous section.

• High Attack Rate: This category contains high rate attempts that are com-

monly referred to as flash attacks [166]. We have chosen a threshold of 4700
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Figure 6.3: Rate Threshold

pps, which is the average rate of the Slammer worm propagation [166], to dif-

ferentiate between medium and high rate attacks. In this exercise, we assume

that the average rate of the fastest worm propagation in 2003 will have, at

least, similar rates as flash attacks in 2014. Please note that in general, on

one hand, worm propagation performs scans for vulnerabilities on hosts in an

attempt to exploit or infect the victims. On the other hand, in relation to

DNS amplification DDoS attempts, the attackers generate, in only one step,

similar attempts to infer open DNS resolvers and execute the amplification

attack. Recall, that the latter technique does not aim at searching for a vul-

nerability to exploit, but instead sends benign DNS ANY queries to abuse open

DNS resolvers in order to amplify the replies on the victims.

• Medium Attack Rate: Intuitively, this class captures those attacks that are

in between the low and high rate categories.

Clustering Component

We resort to data mining clustering approaches in an attempt to uncover and cluster

similar DNS amplification DDoS traces that might be executed by similar authors,
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code, botnet or campaign. This exercise can aid in detecting patterns, trends and

links among attack traces. To achieve this task, we have selected and extracted a

number of attributes, as shown and described in Table 6.3.

Attribute Description

ip.flag IP Flags

ip.flag.df Don’t fragment

ip.len Total IP Length

ip.ttl Time to live

udp.len UDP Length

dns.count.add.rr DNS Additional RRs

dns.qry.name DNS Query Name

flow.avg.pkt.size Average Packet Size

flow.attack.duration Attack Duration

high.asn.numb Autonomous System #

Table 6.3: Chosen Clustering Attributes

Indeed, we have initially analyzed hundreds of attributes from different net-

work layers (i.e., IP/UDP/DNS) in addition to numerous flow-based features (i.e.,

attack duration, average packet size, etc.). However, we have leveraged a ranker [286]

to evaluate the information gain of all the attributes and have chosen the top 10

as shown in Table 6.3. This allowed us to filter out those attributes that were not

applicable or have no or low information gain.

In order to perform the clustering, we have leveraged two algorithms, namely,

the Expectation Maximization (EM) [287] and the k-means [288].

The EM algorithm: This popular iterative refinement algorithm is a stan-

dard procedure for maximum likelihood estimation. This procedure has two stages;

the first, which is the expectation step, is used to mine the association between

current estimates of the parameters and the latent variables by calculating subse-

quent probabilities. The second step, which is the maximization step, is employed

to update the parameters based on an expected complete data log-likelihood [289].
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The k-means algorithm: One of the most well-known and commonly used

clustering technique is the k-means. First, the algorithm randomly selects k of the

objects (i.e., values of extracted attributes), each of which initially represents a

cluster mean or center. As for the remaining objects, based on the cluster mean,

they are allocated to the closest cluster. Consequently, the algorithm calculates the

new mean for every cluster. This process continues through other iterations until

the criterion function converges.

We have chosen the above mentioned algorithms for several reasons. In addi-

tion to being well-known in tackling the data clustering problem, the k-means algo-

rithm has been successfully used to detect anomalies [290] and DDoS [291]. On the

other side, the Expectation Maximization, which extends the k-means paradigm us-

ing a probabilistic approach, has also been leveraged in clustering attacks [292,293]

and has been shown to yield promising results. For more information regarding

the inner workings of the aforementioned clustering algorithms, we kindly refer the

reader to [256].

6.1.2 Empirical Evaluation

The evaluation is based on a real darknet dataset during a 6-month period between

January and June, 2013. Our proposed amplification inference approach is capable

of processing and inferring attacks in around 90 seconds per 20 GB of darknet

traffic. The latter advocates that the proposed approach is practically viable in

operational environments. In regards to our data mining exercises, our analysis is

based on Weka [257], which is a data mining tool implemented in Java. We abide

and closely follow the steps of our proposed approach that was discussed in Section

6.1.1 to elaborate on our analysis, which is based on three main elements, namely,

the characterization, the insights generation and a case study. In total, our approach

identified 134 DNS amplification DDoS attacks, including high-speed, medium and
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stealthy attacks (please refer to the Appendix).

Figure 6.4: DNS Queries Distribution - Semi-annual 2013 Data

Figure 6.5: DNS Queries Distribution - March 2013 Data

DNS Amplification DDoS Characterization

In this section, we present the overall DNS amplification DDoS statistics related to

our analyzed dataset. The semiannual DNS queries distribution is shown in Figure

6.4. The outcome clearly demonstrates the effectiveness of the proposed detection

approach by fingerprinting large-scale reflection DDoS attacks including the famous

reported event, which occurred in March 2013 [211]. On the other hand, in order

to have a closer look at the latter attack, we depict Figure 6.5 that illustrates the

distribution of the queries for the month of March. Please note that the other peaks
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which resemble various unreported reflection attacks, as shown in Figure 6.4, will be

analyzed and elaborated in future work. The average DNS queries arrival time per

hour is approximately 58050 packets. Obviously, several large-scale DNS reflection

DDoS attacks caused some peaks at some periods such as at hours 340, 400 and

517, in which the distribution of packets was raised to 503995, 686774 and 798192

packets, respectively. More explanation on these peaks are discussed in Section 6.1.2.

Query Type Distribution: In order to understand the types of DNS queries

received on the monitored dark space, we list in Table 6.4 the DNS query type

distribution of the analyzed dataset. As expected, the vast majority of these requests

are ANY queries. Note that the top 4 records are the same for the entire 6 months

period. Further, in contrast with the results obtained in 2007 by [113] that found

that ANY records scored only 0.0199% of the entire perceived records, we record

59.64% as observed on the darknet space. As a result, we can arguably assume that

the recent trend of DNS amplification attacks are behind the increase of ANY records

found on the darknet in the current year [211].

January
Packet Count
(%)

February
Packet Count
(%)

March
Packet Count
(%)

April
Packet Count
(%)

May
Packet Count
(%)

June
Packet Count
(%)

9717559 A
(48.91%)

10047038 A
(49.02%)

27649274 ANY
(64.23%)

18378685 ANY
(54.60%)

71798518 ANY
(86.14%)

87174182 ANY
(81.08%)

6738709 ANY
(33.91%)

7763817 ANY
(37.88%)

11310058 A
(26.28%)

11595908 A
(34.45%)

10966132 A
(13.15%)

19876332 A
(18.48%)

3323599 TXT
(16.72%)

2479572 TXT
(12.10%)

2459257 TXT
(5.71%)

3402073 TXT
(10.11%)

473973 TXT
(0.56%)

410547 TXT
(0.38%)

50473 MX
(0.25%)

100463 MX
(0.49%)

500143 MX
(1.16%)

180779 MX
(0.54%)

69117 MX
(0.08%)

30130 AAAA
(0.02%)

36438 PTR
(0.18%)

29232 PTR
(0.14%)

63340 RRSIG
(0.15%)

28716 AAAA
(0.09%)

37052 AAAA
(0.04%)

15441 MX
(0.01%)

Table 6.4: Top 5 DNS Query Type - 2013 Semiannual Darknet Data
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Top Countries: Figure 6.6 and Figure 6.7 respectively show the top 5 source

countries of DNS amplification DDoS attacks and their corresponding generated

traffic. In what follows, we focus our analysis during the three months of February,

March and April, 2013.
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Figure 6.6: Top 5 Source Countries (Attacks)
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Figure 6.7: Top 5 Source Countries (Generated Traffic)

Note that Netherlands was ranked first in terms of both traffic sent and at-

tack counts. Our results cross validate with the investigation in [294] and the news

in [295]. Since Netherlands was mainly involved in the attack, it is normal to see

victims and even scanners located in Netherlands. The United States was also found
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in our result as one of the top most involved countries. For Canada, notice the low

number of attacks but the large amount of generated traffic. The reason behind

this difference is that, although few of the Canadian IPs were involved, yet they

generated a huge amount of traffic. This corroborates the fact that DNS reflection

attacks are very powerful since they allow attackers to create an immense amount of

traffic (i.e., the amplification factor) with very little effort (i.e., very small number

of leveraged bots). After manual inspection, some of these Canadian IPs were found

involved in the largest DDoS attack [18]. More on this result is discussed in Section

6.1.2.
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Figure 6.8: Top Requested Domains

Requested Domains: Last but not least, we illustrate the top requested DNS

domains as shown in Figure 6.8. We anonymize TLDs for sensitivity issues. Figure

6.8 shows that Root is the most requested domain name as perceived by the moni-

tored darknet. Recall that attackers will typically submit a request for as much zone

information as possible to maximize the amplification effect. Hence, the use of Root

as the requested domain name. Note that, from our data, the second top requested

domain (labeled as A) is a TLD that belongs to a large Internet-scale DNS operator.
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Clustering Insights

This section highlights our clustering results. Recall that the aim is to cluster similar

DNS amplification DDoS traces that might be executed by similar authors, code,

botnet or campaign.

Since we had no prior knowledge on the number of clusters, we first run the EM

algorithm to only infer the number of clusters by cross validation [296]. We executed

the algorithm in several cluster modes, using a training set and several percentage

split tasks. We compared all the results and chose the model with the highest

log likelihood for the best fit. After retrieving the number of clusters, we run the

k-means with that number of clusters for further analysis. Again, we run several

experiments (40%, 50%, 60%, 70% and 80% split) using the k-means algorithms

and chose the model with 60% training data and 40% for testing as it achieved the

minimum cluster sum of squared errors.

Cluster k-means Instances

0 31 ( 57%)

1 4 ( 7%)

2 12 (22%)

3 5 ( 9%)

4 2 ( 4%)

Table 6.5: k-means Clustered Instances

Based on our testing data, Table 6.5 lists our summarized instances per clusters

while Figure 6.9 visualizes the final k-means output. Next, we disclose the attributes

that formed the clusters. Table 6.6 shows the cluster centroids of the k-means

algorithm. This table is based on the training set of the data.

It is shown that our model clustered the traces based on 4 different ASNs

with some specific attributes. For instance, in regards to cluster 0, all the DDoS

attacks have source IPs within ASN-V and have the DF flag not set in the IP header.
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Figure 6.9: k-means Clustering of DNS Reflection DDoS attacks

Attribute Cluster 0
(49)

Cluster 1
(8)

Cluster 2
(14)

Cluster 3
(5)

Cluster 4
(4)

high.asn.numb ASN-V ASN-W ASN-X ASN-Y ASN-Y

ip.flag 0x02 0x00 0x02 0x00 0x02

ip.flags.df 0 1 0 1 0

ip.len 56 45 64 64 64

ip.ttl <60 <60 <60 >100 <60

udp.length 36 34 44 44 44

dns.qry.name Root B A A A

flow.avg.pkt.size 70 68 78 78 78

flow.attack.duration <1day <1day <1day <1day btw-day-1week

Table 6.6: k-means Training Cluster Centroids

Moreover, the same flow must have an IP length of 56 bytes and a TTL value less

than 60. In addition, the UDP length must be 36 bytes while the requested domain

is Root. Additionally, all the attacks that belong to cluster 0 should be launched

within a one-day period and possess an entire encapsulated DNS flow of an average

packet size of 70 bytes. Through manual inspection, we found that the majority of

IPs that fall within cluster 0 are originating from Netherlands, which is coherent

with the investigation in [294]. A similar concept applies for other clusters. Note the

similarities between clusters 2, 3 and 4 which could be the result of one campaign

using different ASNs from different locations.
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After the clustering exercise, in order to evaluate our model, we run the cluster

evaluation algorithm in Weka [257]. First the algorithm ignores the class attribute

and generates the clustering. Then it assigns classes to the clusters during the

testing mode, based on the majority of values within each cluster. Afterwards, it

calculates the classification error. Based on this technique, we have achieved a 82%

accuracy. In other words, our model incorrectly classified 18% of the traces to their

corresponding clusters. We aim, in our future work, to analyze more data and run

more complex algorithms to improve our clustering result.

Please note that, although we do not have a decisive proof of whether each

cluster represents a campaign or a botnet of DNS amplification DDoS, we rela-

tively succeeded in this task by pinpointing similarities of features among the DNS

amplification DDoS traces.

Similarity Insights

Next, we infer insights related to the used darknet address space. The aim is to

provide a more core element to our clustering approach. The rationale behind this

task states that since bots in the same campaign typically utilize the same list of

IPs when launching their attacks, it would be interesting to capture the similarity

related to the use of these IP lists. By accomplishing this task, we can possibly

infer campaigns or at least detect similarities in attack mechanisms. To achieve

the intended goal, we executed an experiment to represent attacks that exchange

at least 90% of dark IPs. Figure 6.10 depicts an IP map1 that satisfies the latter

condition.

It is disclosed that two groups of IPs share at least 90% of dark IPs. Please refer

to tables 7.1, 7.2 and 7.3 in the appendix for attack references. The smaller group

consists of 2 IPs from different months (March and April). Our analysis identified

that these two sources share not just dark IP usage, but also country, ASN number,

1The map was generated using Gephi [297], an open source visualization tool.
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Figure 6.10: IPs Sharing at least 90% Darknet Space

speed range, requested domain, and many other attributes as previously identified

in Section 6.1.2 in cluster 0. As for the second group, 7 out of 8 IPs originate from

the same ASN number. All of the attacks in this group are initiated from Europe,

specifically from Netherlands; this finding is corroborated in [294]. Similar to the

first group, these attacks share similarities in clustering attributes and 55.56% of

these traces are found also in cluster 0. One of the interesting point uncovered by

analyzing this group is that all its members are sharing a specific address space

range, possibly highlighting a DDoS campaign.

Case Studies

We discuss below some major case studies that belong to three different attack rates.

The first case study represents high-speed (i.e., flash) DNS amplification DDoS

detected attacks. In our dataset, we have found 3 attacks that fall within this

category, namely, ID F1, M1 and A1. These are shown in the first rows of Tables 7.1,

7.2 and 7.3, respectively. These attacks are found to be focused; intensity is equal

to the contacted unique dark IPs or, in other words, the host/attacker sends only

1 packet per open DNS resolver. First, attack F1 is the fastest detected attack. It

was launched from the United States, California on February 19th. The detected

attack has a rate of 79565.67 pps. This propagation speed is 17 times faster than

the Slammer worm [166]. This attack targeted 6.5% of our darknet in less than 1
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second. Assuming the intent of the attacker is to send one packet for each IP, a

malware with this speed can target the whole IPv4 Internet address space in less

than a week (6 days and few hours). In order to validate the occurrence of this

flash DNS reflection DDoS attack, we resorted to publicly accessible DShield [100]

data and inspected port 53 for the 3 days before and after the 19th of February. We

have noticed a significant increase at this specific date. According to DShield data,

the average incident reports measured on port 53 was 14.28% for the surrounded 7

days of this attack. However, on February 19th, the average reached 38.19% with a

10347879 increase in reports from the previous day. Second, attack M1 was launched

from Taiwan on March 18th. This date is the same for the largest DDoS attack

as declared in [211]. This flash attack sent probes to 50257 unique dark IPs (9.5%

of our /13 darkspace) within 1 second with an average rate of 46677.36 pps. This

speed is almost 10 times faster than the Slammer worm. With this speed, this DDoS

can target 16 millions IPv4 hosts (/8) on the Internet in less than 6 minutes. Third,

attack A1 was also launched from the United States, California on April 15th. The

attack possesses a rate of 21672.18 pps. This attack targeted 11.7% of our darknet

address space.

The second case study, which involves medium speed attacks, is one of the

major inferred DNS amplification DDoS in terms of size and impact. Compared

to the previous case study, this attack is not focused (intensity is not equal to the

contacted unique dark IP or sending at least 1 packet per open DNS resolver). This

attack targeted one victim using 2 hosts (ID M5 and M10 of Table 7.2). This attack

targeted around 360000 unique dark IPs (68% of the monitored /13 darknet), and

hence could be considered the most comprehensive compared to all other threats.

Our analysis linked these traces to the largest DNS amplification DDoS [18] for the

following reasons: 1) In addition to the use of the ANY DNS query, the traces of this

attack targeted the “ripe.net” domain, which was used in the largest DDoS attack

as declared in a blog posted by the victim [211]; 2) the timing of the traces from the
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host with ID M10 started on March 15th, whereas those of the host with ID M5 started

on March 17th. The two mentioned dates could be found in the media [298,299] and

were posted on Twitter on March 17th by a company support personnel [300]. In

order to depict this distributed attack, in Figure 5.6, we highlight the threat using

a colored dashed-line. The first and/or second peaks are likely performed as testing

before actually executing the largest DDoS as demonstrated by the third peak. Our

result matches the ascending order of peaks as discussed by the victims [211]. In

order to predict or provide an approximation of the number of machines that were

involved in the aforementioned largest DNS amplification attack, we assume the

following: Consider M5 as a victim sample (spoofed IP or compromised machine).

The average attempts sent on the darknet is 14464427 packets over 360705 open

DNS resolvers which is around 40 requests per unique dark IP address. Recall that

each dark IP might be considered as an open DNS resolver. Also, assume that the

amplification factor is 75 [211] and each request has a size of 68 Bytes. Moreover,

assuming only 1% (3607) of the 360705 requests reached successfully open DNS

resolvers2, then using a regular machine with a dedicated Internet service, only 1

host can generate amplified reply of 5.482 gigabits (Gb) through 3607 open DNS

resolvers within 1 second. Therefore, to generate a 75 or 300 Gb DNS reflection

DDoS attack, only 14 or 55 synchronized machines (bots) are needed, respectively.

The above two mentioned case studies are probably executed by an attacker

using spoofed IP addresses of the victims or using compromised machines (recall

Figures 2.2 and 2.3). We unlikely consider these activities as scanning events that

are using legitimate addresses (i.e., the intention is not to attack themselves but

other targeted victims).

The third case study involves slow rate attacks such as hosts with ID M51 to

M54 in Table 7.2. This analysis targets stealthy focused attempts. These attacks

have low sending rate and are typically hard to detect using a firewall and/or a

2As of November 2013, this is very probable as there is around 32 million open DNS servers on
the entire Internet [301]
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typical intrusion detection system [285]. From Table 7.2, all information regarding

these 4 hosts appears very similar or the same. Therefore, such stealthy activities are

mostly generated by the same author/code/campaign. Although we cannot claim

the orchestration among these hosts, our data highlights some shared characteristics

among such stealthy threats. Note that the requested domain names within these

attacks belong to a well-known organization that deals with securing online trans-

actions. Another group of stealthy attempts that are of interest are IDs A48 and

A51 that are shown in Table 7.3. The hosts behind these activities scan slowly with

an unprecedented average packet rate. For instance, ID A48 remains online for al-

most 3 weeks. Future analysis on this group of stealthy attempts might pinpoint to

certain suspicious unknown activities. Unfortunately, it is very hard to validate our

stealthy scanning activities with other security repositories or media as their impact

is in the information gain rather than the maliciousness of their acts. In contrast

to the previous two case studies, the attackers in such stealthy scenarios can use

their legitimate addresses. The reason behind this assumption is that it is almost

impossible to execute a powerful DNS reflection DDoS attack through a low-speed

propagation. However, in these attacks, we reason that attackers will attempt to

locate open DNS resolvers and/or build a DNS hierarchy table retrieved from the

ANY replies before executing their attacks.

In addition to performing several validations of our results through DShield

and the media, we execute a renowned Network Intrusion and Detection System

(NIDS) (i.e., Snort [41]) on the whole traces to see if we can detect such malicious

activities. The NIDS labeled 129 out of the inferred 134 (96%) threats as executing

filtered portsweep probes. We have found that the 5 undetected attacks refer to

the third case study (i.e., slow rate attacks, namely, IDs M51 to M54 and A51) that

was previously discussed. After manual inspection, the M51 and A51 attacks turned

out to be originating from the same source that is executing stealthy scans but in

different time periods. Moreover, all these attacks are requesting one organization’s
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domain. In summary, we can claim that our approach that aims at inferring DNS

reflection attacks yielded a zero false negative in comparison with a leading NIDS.

Further, our approach, leveraging the darknet space, can infer DNS amplification

DDoS activities while a NIDS is limited to pinpointing scanning activities.

6.2 Related Work

Cyber security experts and researchers employ darknet analysis for several purposes,

namely, monitoring and inferring large-scale Internet events, including, DDoS [30],

probing activities [9, 28], worm propagation [46], analyzing events [196], measuring

misconfiguration [1] and implementing monitoring sensors [57]. Since this part of the

thesis deals with cyber threats characterization in general and amplification DDoS

in particular, we subsequently pinpoint the relevant related work in the areas of

darknet profiling, DDoS attacks and darknet analysis, and amplification analysis.

Profiling darknet data: Pang et al. [108] elaborated on a detailed analysis of

darknet data. Their active and passive analysis assessed darknet samples from dif-

ferent networks over a long period of time. Four years later, Wustrow et al. [2]

reviewed the last mentioned work to update the state of this Internet background

radiation. The authors observed significant changes and pinpointed several factors

that are behind these measures. Moreover, Fukuda et al. [258] studied correlations

among darknet traffic for estimating their behaviors through small address blocks by

analyzing a specific type of traffic packets (i.e., TCP SYN). Furthermore, Oberheide

et al. [113] analyzed specific services on darknet such DNS. The authors character-

ized these traces and proposed a mechanism to implement a secure DNS service

on darknet sensors. In another work, Dagon et al. [284] analyzed corrupted DNS

resolution paths and pinpointed an increase in malware that modified these paths

and threatened DNS authorities.
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DDoS attacks and darknet analysis: The use of darknet to infer DDoS ac-

tivities owes much to the pioneer work carried out by Moore et al. [30] that was

revisited in [262]. The key observation behind the authors’ technique is that at-

tackers, before executing a DDoS attack, spoof their addresses using random IP

addresses. As such, all victims’ replies (i.e., backscattered packets) are bounced

back to the fake IP addresses, which could be in the monitored darknet. Their

work is operated by CAIDA [302], which provide backscattered data for researchers.

Numerous research works have been performed on such data to analyze DDoS activ-

ities. The majority focus on implementing new detection techniques to infer DDoS

attacks [120,154,155,213], tracing-back the sources of attacks [42,303], investigating

spoofed attacks [195] and visualizing attacks [225, 304, 305]. Further, very recently,

Wang et al. [306] have executed a large empirical study on Botnet-based DDoS

activities. Their work investigated data generated through active and passive mea-

surements from several countries. Some of their findings include insights on the

geo-spatial distribution and co-occurrence of orchestrated attacks against similar

victims.

Amplification analysis: Paxson [209] was among the first to pinpoint the threats

of DNS reflectors. The author discussed various defenses against reflector attacks

and indicated three types of threats abusing network services, namely, DNS, Gnutella

and web servers via TCP. Rossow et al. [32] revisited UDP-based protocols that can

be abused for reflection attacks. The authors identified 14 protocols that are suscep-

tible to DRDoS amplification. Similarly, Kuhrer et al. [210] demonstrated that even

TCP protocols can be abused for amplification. In an another work, Anagnostopou-

los et al. [283] introduced a new technique to execute DNS amplification attacks

through DNSSEC-powered servers. Moreover, Czyz et al. [242] characterized NTP

traffic and reflection attacks on darknet and showed the rise and decline of NTP

DRDoS attacks using a large empirical study.
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Our work is complementary and extends the aforementioned research works

by exploiting requests (i.e., query) packets targeting the darknet to effectively infer

DRDoS amplification activities. In this work, we do not only focus on the measure-

ment and characterization of amplification attacks, but also uncover their attack

meachnisms throughout darknet analysis.

6.3 Summary

In this chapter, we presented a novel approach to infer Internet DRDoS activities

by leveraging the darknet space. The approach corroborated the fact that one can

infer DDoS attacks without relying on backscattered analysis. The detection module

was based on certain parameters to fingerprint network flows as DNS amplification

DDoS-related. The classification module amalgamated the attacks based on their

possessed rate while the clustering component attempted to identify flows that share

similarity features to disclose campaigns of DRDoS. The analysis was based on 1.44

TB of real darknet traffic collected during a several month period. The results dis-

closed 134 DNS reflection DDoS activities, including flash and stealthy attacks. The

clustering and similarity exercises provided insights and inferences that permit the

detection of DNS amplification DDoS campaign activities. Moreover, the discussed

case studies elaborated on three attack categories and provided significant related

cyber security intelligence.

Lessons Learned and Future Work

From this work, we can extract the following insights related to DNS amplification

attacks. First, when compared to previous years, we have found that DNS amplifi-

cation attacks are behind the increase of DNS queries of type ANY on the Internet.

Second, we have pinpointed that the majority of the attacks target the root domain.
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Third, we have inferred that DNS reflection attack rates can range from very low to

high speeds. High speed attacks pinpoint victims of spoofed attacks and compro-

mised machines whereas the very slow attacks reflect stealthy scans. Last but not

least, we have unexpectedly uncovered a UDP-based mechanism used by attackers

to execute DNS amplification attacks in a highly rapid manner without collecting

information about open DNS resolvers. In other words, we have inferred that unlike

typical DDoS attempts that scan for vulnerable machines and then execute the at-

tack, the largest DNS amplification analyzed was executed in only one step through

a small number of machines; benign DNS queries are sent to the Internet with the

intention to reach open DNS resolvers, which subsequently trigger a reflection reply

to the victim.

As for future work, we aim to execute our model on a larger data set and ex-

periment with more complex data mining exercises to improve our clustering model.
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Chapter 7

Conclusion

Technology has emerged in all aspects of our lives. Regrettably, adversaries are

abusing technology for their own benefits. As a result, Internet services have be-

come a cheap tool for attackers to generate malicious activities such as infecting

victims’ machines, taking control, exhausting resources and stealing information.

Recent events demonstrated that individuals, corporations and governmental

organizations could be subjected, at the speed of light and in full anonymity, to am-

plified, large-scale and disrupting attacks that might lead to severe privacy/security

and economic consequences, and even to the endangerment and loss of human lives.

DoS attacks are perhaps the most prominent and severe types of such large-scale

cyber attacks. These attacks might be carried out by a spectrum of individuals

such as criminals, cyber-terrorists and foreign government spies. Moreover, as the

closest approximation of perfect anarchy, the Internet becomes an attractive tool to

terrorists for spreading messages, recruiting supporters, planning and coordinating

attacks. In this context, it is a national duty of paramount importance to monitor

and protect Internet services.

In this thesis, we tackled the increasing cyber security concern rendered by
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DoS activities. To achieve this task, we successfully monitored darknet, also known

as network telescope. In particular, we primarily reviewed the literature in terms of

darknet deployment approaches, analysis techniques and visualization of its data.

Darknet projects were found to monitor various cyber threat activities and were

distributed in one third of the global Internet. We further identified that Honeyd

is probably the most practical tool to implement darknet sensors, and future de-

ployment of darknet will include mobile-based VOIP technology. In addition, as

far as darknet analysis is considered, computer worms and scanning activities were

found to be the most common threats that can be investigated throughout dark-

net. Code Red and Slammer/Sapphire are the most analyzed worms. Furthermore,

our study uncovered various lacks in darknet research. For instance, less than 1%

of the contributions tackled DRDoS amplification investigations and at most 2%

of research works pinpointed spoofing activities. Second, we studied the nature of

darknet data and the correlation among inferred threats. Such work proved that

specific darknet threats are correlated. Moreover, it provided insights about threat

patterns and allowed the interpretation of threat scenarios. Third, we attempted

to predict DoS events by proposing a forecasting model. The extracted inferences

from various DDoS case studies exhibited a promising accuracy with low error rate.

Further, our prediction model could lead to a better understanding of the scale,

speed and size of DDoS attacks and generates inferences that could be adopted for

immediate response and mitigation. Moreover, the accumulated insights could be

used for the purpose of long term large-scale DDoS analysis. Finally, we concen-

trated our research work towards the detection of large-scale DDoS activities. While

inferring such malicious activities, we uncovered traces from the largest DNS ampli-

fication attack in history, and consequently proposed a novel approach to fingerprint

and estimate the size of amplification attacks. Complementary to the pioneer work

on inferring DDoS activities using darknet, this work proved that we can extract

DDoS activities without relying on backscattered analysis. The results uncovered
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high-speed and stealthy attempts that were never previously documented. The ex-

tracted insights from various validated DNS DRDoS case studies led to a better

understanding of the nature and scale of this threat and generated inferences that

could contribute in detecting, preventing, assessing, mitigating and even attributing

DRDoS activities.

From the conducted research, we have extracted the following points:

• Compared with other trap-based monitoring systems, darknet is considered as

a practical and easy-to-implement tool in passive monitoring the cyber space.

Darknet setup can be developed using basic routing techniques and can be

monitored through IDSs.

• Mobile darknet is a new trend that has a promising future in passive monitor-

ing research. The future deployment will include mobile-based VoIP darknet.

• A study in 2001 [126] shows that darknet sensors occupy 5% of the whole IPv4

address space. An up-to-date study is needed to approximate the current size

of darknet.

• Filtering darknet misconfiguration is still not thoroughly investigated in the

literature and hence requires more attention from the research community.

• Inferring and attributing botnet or malicious campaigns by solely monitoring

darknet is challenging due to the passive nature of such IP space. Therefore,

other interactive techniques such as honeypots could be used in conjunction

with darknet analysis to enhance botnet investigation.

• IPv6 darknet, event monitoring and game engine visualization methods require

a significantly greater amount of attention from the research community.
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• Differentiating between scanning and DRDoS is still partially a difficult prob-

lem due to the fact that both leverage scan-based techniques to operate. Scan-

ning activities probe the Internet to collect information, whereas reflection

activities generate scan-based requests to redirect amplified reply traffic to

victim.

• Packet analysis is the only technique used on darknet data to investigate spoof-

ing activities. This method includes inspecting ICMP packets and TTL values.

Based on our survey, less than 2% of research has been done on spoofing and

darknet. Therefore, spoofing is still a severe malicious activity that needs more

attention from the security research community.

• Despite the existence of some collaborative darknet projects, more darknet re-

sources and information sharing must emerge to infer and attribute large-scale

cyber activities. Dealing with a worldwide darknet information exchange is

a capability that requires collaboration and trust; however, this collaboration

raises security policies and privacy concerns.

7.1 Discussions

We list below some of the most relevant topics for discussion.

• Analysis of IPv4 & IPv6 Darknet Data: A major element that distin-

guishes IPv4 from IPv6 is the size of the address space. In a nutshell, IPv6

is designed to provide significantly more address space to handle the Internet

growth in a more secure and efficient manner. The migration and integration

between these two technologies have already started [307]. For instance, sev-

eral techniques are being leveraged to handle this migration such as tunneling

and address translation. This shift will obviously affect network monitoring
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systems such as darknet. As such, both defense and attack mechanisms will be

affected. For instance, in regard to security, IPv6 packets might have higher

encryption. The latter will make it harder for defense teams to analyze and

interpret suspicious traffic and easier for attackers to obfuscate. Furthermore,

since IPv6 is larger in address space, this will make it harder to monitor huge

amounts of traffic. It is also difficult for attackers to probe the large address

space to look for vulnerabilities. Regardless of the aforementioned impacts, it

is only a matter of time for IPv6 darknet to become more involved in the era

of trap-based monitoring system. This requires attention from the security

community.

• Deployment and Technology Development: Nowadays, technology has

become a part of our daily life. Basic electronic devices such as phones,

watches, and glasses have evolved into smart equipment and become easily

accessible through the Internet. This new shift has obviously increased the

opportunity for malicious users to abuse such services. The latter threat can

have a direct impact on our lives. For instance, attackers are abusing the In-

ternet to generate flood of Voice over IP phone calls to attack 911 emergency

phone services or spam mobiles with anonymous call or SMS messages [50].

Therefore, deploying darknet and honeypot sensors that operate on phone

and mobile numbers is highly needed. The latter techniques are considered

significantly important and require enormous attention from the research com-

munity.

• Visualization and Learning: Today’s revolutionary technology is putting

emphasis on visualization for the simple and friendly use of machines and in-

formation. In fact, researchers have found that, in a learning environment,

the majority of people need to see information before learning [308]. As such,

visualization and gaming have emerged largely in technologies such as social
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media, mobile and web services. In regard to cyber security, our vision is

coherent with some of the aforementioned research works in [218–220], which

emphasize on building monitoring systems based on game engines and visual-

ization techniques. Therefore, we believe that the future generation of tools

and technologies in cyber security will include more visual effects and game-

based services. Such technologies already exist. For instance, the LOIC [309]

is a well-known network stress testing and DDoS attack tool used by malicious

and benign users in a game-friendly manner. We predict that, in the upcoming

years, similar technologies will become a new trend for the cyber space.

• Cyber Capabilities: One of today’s challenges is to build cyber capabilities

with the ability to provide a generic technique to automate the inference of

botnet and orchestrated campaigns (i.e., DDoS and Spamming). The NICTER

project [77] is a typical scenario of such cyber capability. Moreover, another

challenge is to build a trusted centralized repository of darknet data that can

be used for worldwide monitoring and intelligence sharing. Such a worldwide

project requires a thorough understanding of the challenges behind the privacy

and legal issues.

• Cyber Awareness: Enforcing cyber laws has escalated the intensity of at-

tacks [310]. Therefore, cyber law enforcement and its related security tech-

nologies are not the ultimate solution to mitigate and defend against cyber

attacks. As such, other techniques like learning and education are needed to

increase the awareness and help in applying best practices for ethically using

the cyber space as a service instead of abusing its enormous capabilities.

164



7.2 Considerations

In general, our overall proposed approaches leverage darknet to infer and extrapo-

late attacks. Therefore, there are three assumptions that underlie our analysis:

• Attackers’ IP Address Selection: Although our monitored sensors are

relatively large (i.e., /13), the approach is unable to monitor events that do

not target such sensors. The latter can occur when attackers use an already

published hit list or test specific and known amplifiers. Although such meth-

ods will allow attacks to avoid being detected or assessed by our approach,

adversaries in general prefer to employ an up-to-date and various hit lists of

amplifiers to decrease their chances of being detected and to increase their

chances of launching amplification attacks [32]. To achieve the latter, at least

one global scan is first needed to assess the impact of the amplification factor;

a scan that would probably hit our sensors. We concur that we are not aware

of any worldwide reported attacks that were not (at least partially) inferred

by our proposed approach.

• Detection Avoidance: Our proposed detection algorithm leverages several

attack parameters. As such, attackers can tune their attacks to avoid being

detected. For instance, adversaries can craft raw IP packets or inject random

delays to reduce the flow to a rate below the employed threshold parameter.

However, we argue that crafting raw IP packets and injecting random delay in

the attack flows are relatively time consuming operations, especially given that

one of the major amplification attack parameters is the rate. Thus, attackers

adopting these methods will decrease their efficiency or at least reduce the

impact of their generated attacks.
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7.3 Future Work

The investigation of DRDoS activities has seen increasing attention from the security

community in terms of measurement and analysis [32]. However, the issue of how to

systematically assess the impact of such attacks on the Internet infrastructure has

not yet been dealt with. The latter task becomes even more imperative, given that

current practices rely on manual and reactive analysis. For instance, the largest

Domain Name System (DNS) DRDoS attack that occurred in 2013 required more

than few days to be analyzed [211], where its actual impact was speculated to range

between 75 Gbps [40] and 300 Gbps [211]. Further, the analysis of the largest

Network Time Protocol (NTP) DRDoS attack of 2014 took more than 3 days [5],

where its actual rate and impact were postulated a week later. Additionally, while

investigating thousands of DDoS and DRDoS activities for several years, we have

discovered that labeling some large-scale DDoS attacks as severe, based solely on the

number of packets, could lead to inaccurate results or even false positives. Therefore,

as future work, we aim at tackling the design and implementation of a prediction

model for amplification attacks.
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APPENDIX

The summary of the Analyzed DNS Amplification DDoS Traces of February, March

and April 2013 is shown in Table 7.1, 7.2 and 7.3 respectively.
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Victim/
Scanner
ID

Requested
Domain
Name

Detection
Period

Analyzed
Attack
Duration
(second)

Intensity
(packet)

Contacted
Unique
Dark
IPs

Avg.
Packet
Size
(Bytes)

Avg.
Rate
(pps)

Rate
Category

F1 A Feb 19 0 34410 34410 78 79565.67 High

F2 G Feb 14 4477 129206 129206 85 28.86 Medium

F3 A Feb 21 29174 690219 305544 78 23.66 Medium

F4 Root Feb 26 17084 351617 351617 70 20.58 Medium

F5 Root Feb 19 16245 290590 290590 70 17.89 Medium

F6 Root Feb 26 9389 162513 162513 70 17.31 Medium

F7 Root Feb 11-12 25052 349692 349692 70 13.96 Medium

F8 Root Feb 20 15215 187886 187886 70 12.35 Medium

F9 Root Feb 13 61591 660473 356162 70 10.72 Medium

F10 Root Feb 16-17 33602 355188 355188 70 10.57 Medium

F11 Root Feb 3 6625 64726 64726 70 9.8 Medium

F12 Root Feb 23 11412 96216 96216 70 8.4 Medium

F13 Root Feb 2-3 93268 633886 357497 70 6.8 Medium

F14 A Feb 3 19872 128297 128297 78 6.46 Medium

F15 Root Feb 7 2107 12965 12965 70 6.15 Medium

F16 Root Feb 23-27 401266 804348 359868 70 2 Medium

F17 Root Feb 11-15 311301 316425 316425 70 1.02 Medium

F18 Root Feb 4-19 1322119 869395 360666 70 0.66 Medium

F19 Root Feb 4-14 853983 540412 356117 70 0.63 Medium

F20 A Feb 3 10634 6632 6632 78 0.62 Medium

F21 A Feb 3-16 1138804 683321 359470 78 0.6 Medium

F22 Root Feb 20-28 766810 378289 319668 70 0.49 Low

F23 Root Feb 5 27832 9645 8123 70 0.35 Low

F24 A Feb 19 50374 16393 16393 78 0.33 Low

F25 A Feb 4 16353 5306 5306 78 0.32 Low

F26 Root Feb 6-26 1706728 191562 191329 70 0.11 Low

F27 Root Feb 15-26 970150 19636 19636 70 0.02 Low

F28 A Feb 9-28 1691139 16845 16845 78 0.01 Low

F29 A Feb 15-22 640165 966 966 78 0 Low

Table 7.1: Summary of DNS Amplification DDoS Traces (February 2013)
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Victim/
Scanner
ID

Requested
Domain
Name

Detection
Period

Analyzed
Attack
Duration
(second)

Intensity
(packet)

Contacted
Unique
Dark
IPs

Avg.
Packet
Size
(Bytes)

Avg.
Rate
(pps)

Rate
Category

M1 A March 18 1 50257 50257 78.00 46677.36 High

M2 A March 31 26 63543 63543 78.00 2419.83 Medium

M3 E & F March 22 620 798192 65025 73.00 1287.41 Medium

M4 A March 20 402 91042 91042 67.00 226.21 Medium

M5 B March 17-18 93508 14464427 360705 68.00 154.69 Medium

M6 Root March 3 572 64956 64956 70.00 113.53 Medium

M7 Root March 23 662 64230 64230 70.00 97.00 Medium

M8 Root March 30 610 58104 58104 70.00 95.19 Medium

M9 Root March 24 665 63139 63139 70.00 94.99 Medium

M10 B March 15 34605 3176785 360683 68.00 91.80 Medium

M11 Root March 1 769 63342 63342 70.00 82.33 Medium

M12 A March 25 985 79333 54632 78.00 80.52 Medium

M13 Root March 12 581 40364 37160 70.00 69.46 Medium

M14 Root March 1-2 2685 161847 154905 70.00 60.28 Medium

M15 C March 25 1 60 60 77.00 58.69 Medium

M16 A March 9 8884 504794 270352 78.00 56.82 Medium

M17 A March 30 1963 63623 63623 78.00 32.41 Medium

M18 Root March 21 10255 254285 254285 70.00 24.80 Medium

M19 Root March 7 13572 247483 247483 70.00 18.23 Medium

M20 Root March 2 25314 355675 355675 70.00 14.05 Medium

M21 Root March 13 9796 128147 128147 70.00 13.08 Medium

M22 Root March 27 24391 286664 286664 70.00 11.75 Medium

M23 Root March 8 33354 346244 346244 70.00 10.38 Medium

M24 Root March 28-29 33280 342941 342941 70.00 10.30 Medium

M25 A March 17-18 71943 358931 267826 78.00 4.99 Medium

M26 A March 30 13667 61269 51999 78.00 4.48 Medium

M27 Root March 14-17 342024 1396535 360701 70.00 4.08 Medium

M28 Root March 28-29 56305 224327 224327 70.00 3.98 Medium

M29 Root March 11 73864 248582 129708 70.00 3.37 Medium

M30 A March 24 213 663 663 78.00 3.12 Medium

M31 Root March 28-29 85385 221213 221213 70.00 2.59 Medium

M32 A March 30 163 397 396 78.00 2.43 Medium

M33 A March 29-30 82278 159295 159295 78.00 1.94 Medium

M34 A March 30 330 640 639 78.00 1.94 Medium

M35 Root March 24-25 69590 127214 127214 70.00 1.83 Medium

M36 A March 31 38596 63553 63311 78.00 1.65 Medium

M37 Root March 21-24 182116 254529 130964 60.00 1.40 Medium

M38 Root March 4-5 140455 184555 159959 70.00 1.31 Medium

M39 Root March 22-25 276510 352012 352011 70.00 1.27 Medium

M40 Root March 22-23 116870 118871 65213 70.00 1.02 Medium

M41 Root March 15-29 1207792 1171393 360697 70.00 0.97 Medium

M42 Root March 22-29 563031 404882 351862 70.00 0.72 Medium

M43 A March 1 21616 7107 7107 78.00 0.33 Low

M44 A March 15 52584 17013 17013 78.00 0.32 Low

M45 A March 1-7 466136 92176 89073 78.00 0.20 Low

M46 A March 15-31 1393227 152254 134270 78.00 0.11 Low

M47 A March 6-30 2119713 194209 65792 78.00 0.09 Low

M48 A March 13 24521 2297 2117 78.00 0.09 Low

M49 Root March 6-24 1570323 64062 63698 70.00 0.04 Low

M50 A March 18-28 642350 278 236 78.00 0.00 Low

M51 D March 27-28 41548 44 44 70.00 0.00 Low

M52 D March 27-28 75803 42 42 70.00 0.00 Low

M53 D March 27-28 90128 39 39 70.00 0.00 Low

M54 D March 27-28 56874 37 37 70.00 0.00 Low

Table 7.2: Summary of DNS Amplification DDoS Traces (March 2013)
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Victim/
Scanner
ID

Requested
Domain
Name

Detection
Period

Analyzed
Attack
Duration
(second)

Intensity
(packet)

Contacted
Unique
Dark
IPs

Avg.
Packet
Size
(Bytes)

Avg.
Rate
(pps)

Rate
Category

A1 A Apr 15 3 61859 61859 78 21672.18 High

A2 H Apr 13 136 64485 64485 70 472.64 Medium

A3 Root Apr 10 70 18718 18718 70 266.8 Medium

A4 A Apr 21 4463 479863 264283 78 107.51 Medium

A5 Root Apr 25 4023 151894 151894 70 37.76 Medium

A6 Root Apr 20 325 11068 11068 70 34.05 Medium

A7 C Apr 28 1274 40903 40903 77 32.11 Medium

A8 Root Apr 4 6927 218917 218917 70 31.6 Medium

A9 Root Apr 25 3171 57837 42578 70 18.24 Medium

A10 A Apr 4 3791 68039 56211 78 17.95 Medium

A11 Root Apr 16 8723 154154 154154 70 17.67 Medium

A12 Root Apr 11 24015 350275 350275 70 14.59 Medium

A13 I Apr 1 23608 340905 340905 92 14.44 Medium

A14 Root Apr 25 39305 408596 408596 70 10.4 Medium

A15 Root Apr 16-17 27760 284387 284386 70 10.24 Medium

A16 Root Apr 12 6821 64299 64299 70 9.43 Medium

A17 Root Apr 16-17 65224 610166 355290 70 9.35 Medium

A18 Root Apr 13-14 11834 95117 95117 70 8.04 Medium

A19 B Apr 5-6 73456 345133 343652 79 4.7 Medium

A20 Root Apr 14-15 42560 182836 182834 60 4.3 Medium

A21 A Apr 20-21 55680 237640 190915 67 4.27 Medium

A22 Root Apr 6-8 179271 695695 360267 60 3.88 Medium

A23 A Apr 15-16 89471 346554 346554 78 3.87 Medium

A24 Root Apr 1-2 135389 507427 291844 70 3.75 Medium

A25 A Apr 18 23 85 85 78 3.75 Medium

A26 A Apr 24-30 568658 1601134 357930 78 2.82 Medium

A27 Root Apr 1-2 120727 316718 224789 70 2.62 Medium

A28 A Apr 21 46328 116129 65563 78 2.51 Medium

A29 Root Apr 2-3 90532 222416 222416 70 2.46 Medium

A30 Root Apr 13-15 184882 408581 228422 70 2.21 Medium

A31 Root Apr 22-23 145929 321446 257906 70 2.2 Medium

A32 A Apr 3-4 56113 120662 120662 78 2.15 Medium

A33 Root Apr 1-29 2463203 3495104 360705 70 1.42 Medium

A34 Root Apr 13-22 777630 1049946 360690 70 1.35 Medium

A35 Root Apr 3-8 463324 593142 357414 70 1.28 Medium

A36 Root Apr 7-11 295595 316685 225376 70 1.07 Medium

A37 A Apr 10-20 839737 746958 297831 78 0.89 Medium

A38 Root Apr 27-28 91306 64338 64338 70 0.7 Medium

A39 A Apr 12 18587 6049 6049 78 0.33 Low

A40 A Apr 5-20 1312707 385495 65792 78 0.29 Low

A41 A Apr 25-30 431330 119938 65642 78 0.28 Low

A42 C Apr 17-19 158580 40362 40362 77 0.25 Low

A43 Root Apr 13-20 543326 129962 95477 70 0.24 Low

A44 A Apr 1-4 288469 60878 60878 78 0.21 Low

A45 A Apr 17-26 831476 131106 109673 78 0.16 Low

A46 Root Apr 14-20 496168 63559 40901 70 0.13 Low

A47 Root Apr 5-10 426625 35125 35125 70 0.08 Low

A48 J Apr 2-23 1828890 81868 3744 75.49 0.04 Low

A49 H Apr 9-10 96970 1077 1074 70 0.01 Low

A50 K Apr 23-30 640451 8964 7871 68 0.01 Low

A51 D Apr 15-17 156226 63 47 71.02 0 Low

Table 7.3: Summary of DNS Amplification DDoS Traces (April 2013)
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ing Pursuit Methodology for Anomaly Detection in Computer Networks,” in

Computer Recognition Systems 4. Springer, 2011, pp. 727–736.

[122] M. Choras, L. Saganowski, R. Renk, and W. Holubowicz, “Statistical and

signal-based network traffic recognition for anomaly detection,” Expert Sys-

tems, pp. 232–245, 2012.

[123] P. Chhabra, A. John, and H. Saran, “PISA: Automatic Extraction of Traffic

Signatures,” in Fourth International Conference in Networking, 2005, pp. 730–

742.

[124] X. He and S. Parameswaran, “MCAD: Multiple connection based anomaly de-

tection,” in 11th IEEE Singapore International Conference on Communication

Systems (ICCS), 2008, pp. 999–1004.

185



[125] K. Dassouki, H. Debar, H. Safa, and A. Hijazi, “A TCP delay-based mecha-

nism for detecting congestion in the Internet,” in Third International Confer-

ence on Communications and Information Technology (ICCIT). IEEE, 2013,

pp. 141–145.

[126] C. Labovitz, A. Ahuja, and M. Bailey, “Shining light on dark address space,”

Arbor Netwoks, Ann Arbor, Michigan, USA, Tech. Rep. TR-2001-01, Novem-

ber 2001.

[127] J. Francois, O. Festor et al., “Tracking global wide configuration errors,” in

IEEE/IST Workshop on Monitoring, Attack Detection and Mitigation, 2006.

[128] U. Harder, M. W. Johnson, J. T. Bradley, and W. J. Knottenbelt, “Observing

Internet worm and virus attacks with a small network telescope,” Electronic

Notes in Theoretical Computer Science, pp. 47–59, 2006.

[129] T. Holz, “Learning More About Attack Patterns With Honeypots,” in Pro-

ceedings of Sicherheit, 2006, pp. 30–41.

[130] J. François, R. State, and O. Festor, “Activity Monitoring for large honeynets

and network telescopes,” International Journal On Advances in Systems and

Measurements, vol. 1, no. 1, pp. 1–13, 2008.

[131] M. OHTA, S. SUGIMOTO, K. FUKUDA, T. HIROTSU, O. AKASHI,

and T. SUGAWARA, “Analysis of time-series correlations of packet arrivals

to darknet and their size- and location-dependencies,” Computer Software,

vol. 28, no. 2, 2011.

[132] D. Inoue, K. Yoshioka, M. Eto, Y. Hoshizawa, and K. Nakao, “Malware be-

havior analysis in isolated miniature network for revealing malware’s network

activity,” in IEEE International Conference on Communications (ICC), 2008,

pp. 1715–1721.

186



[133] R. Berthier, D. Korman, M. Cukier, M. Hiltunen, G. Vesonder, and D. Shele-

heda, “On the comparison of network attack datasets: An empirical analysis,”

in 11th IEEE High Assurance Systems Engineering Symposium (HASE), 2008,

pp. 39–48.

[134] V. Yegneswaran, P. Barford, and J. Ullrich, “Internet intrusions: Global char-

acteristics and prevalence,” in ACM SIGMETRICS Performance Evaluation

Review, 2003, pp. 138–147.

[135] R. Rangadurai Karthick, V. Hattiwale, and B. Ravindran, “Adaptive network

intrusion detection system using a hybrid approach,” in Fourth International

Conference on Communication Systems and Networks (COMSNETS), 2012,

pp. 1–7.

[136] P. Barford, Y. Chen, A. Goyal, Z. Li, V. Paxson, and V. Yegneswaran, “Em-

ploying honeynets for network situational awareness,” in Cyber Situational

Awareness, ser. Advances in Information Security, 2010, vol. 46, pp. 71–102.

[137] D. Inoue, K. Yoshioka, M. Eto, M. Yamagata, E. Nishino, J. Takeuchi, K. Ohk-

ouchi, and K. Nakao, “An incident analysis system nicter and its analysis en-

gines based on data mining techniques,” in Advances in Neuro-Information

Processing. Springer, 2009, pp. 579–586.

[138] O. Thonnard and M. Dacier, “Actionable knowledge discovery for threats

intelligence support using a multi-dimensional data mining methodology,” in

IEEE International Conference on Data Mining Workshops (ICDMW), 2008,

pp. 154–163.

[139] O. Thonnard and D. Marc, “A framework for attack patterns’ discovery

in honeynet data,” Digital Investigation, vol. 5, Supplement, pp.

S128 – S139, 2008, the Proceedings of the Eighth Annual DFRWS

187



Conference. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1742287608000431

[140] O. Thonnard, W. Mees, and M. Dacier, “Addressing the attack

attribution problem using knowledge discovery and multi-criteria fuzzy

decision-making,” in Proceedings of the ACM SIGKDD Workshop on

CyberSecurity and Intelligence Informatics, 2009, pp. 11–21. [Online].

Available: http://doi.acm.org/10.1145/1599272.1599277

[141] S. Sinha, M. Bailey, and F. Jahanian, “One size does not fit all: 10 years

of applying context-aware security,” in IEEE Conference on Technologies for

Homeland Security (HST), 2009, pp. 14–21.

[142] C. Fachkha, E. Bou-Harb, A. Boukhtouta, S. Dinh, F. Iqbal, and M. Debbabi,

“Investigating the Dark Cyberspace: Profiling, Threat-Based Analysis and

Correlation,” in 7th International Conference on Risk and Security of Internet

and Systems (CRiSIS). Cork, Ireland: IEEE, 2012, pp. 1–8.

[143] E. Ahmed, A. Clark, and G. Mohay, “A novel sliding window based change

detection algorithm for asymmetric traffic,” in IFIP International Conference

on Network and Parallel Computing (NPC). IEEE, 2008, pp. 168–175.

[144] E. Ahmed, C. Andrew, and M. George, “Effective change detection in large

repositories of unsolicited traffic,” International Conference on Internet Mon-

itoring and Protection, vol. 0, pp. 1–6, 2009.

[145] W. Chen, Y. Liu, and Y. Guan, “Cardinality change-based early detection of

large-scale cyber-attacks,” in Proceedings IEEE INFOCOM, 2013, pp. 1788–

1796.

188



[146] S. Soltani, S. A. Khayam, and H. Radha, “Detecting malware outbreaks using

a statistical model of blackhole traffic,” in IEEE International Conference on

Communications (ICC), 2008, pp. 1593–1597.

[147] M. Casado, T. Garfinkel, W. Cui, V. Paxson, and S. Savage, “Opportunistic

measurement: Extracting insight from spurious traffic,” in Proceedings of the

4th ACM Workshop on Hot Topics in Networks (Hotnets-IV), 2005.

[148] A. Clark, M. Dacier, G. Mohay, F. Pouget, and J. Zimmermann, “Internet

attack knowledge discovery via clusters and cliques of attack traces,” Journal

of Information Assurance and Security, vol. 1, no. 1, pp. 21–32, 2006.

[Online]. Available: http://eprints.qut.edu.au/22973/

[149] S. O. Hunter, B. Irwin, and E. Stalmans, “Real-time distributed malicious

traffic monitoring for honeypots and network telescopes,” in Information Se-

curity for South Africa, 2013. IEEE, 2013, pp. 1–9.

[150] R. Gupta, K. Ramamritham, and M. Mohania, “Ratio threshold queries over

distributed data sources,” Proceedings of the VLDB Endowment, vol. 6, no. 8,

pp. 565–576, 2013.

[151] E. Cooke, Z. M. Mao, and F. Jahanian, “Hotspots: The root causes of non-

uniformity in self-propagating malware,” in IEEE International Conference

on Dependable Systems and Networks (DSN), 2006, pp. 179–188.

[152] H. Luo, Y. Lin, H. Zhang, and M. Zukerman, “Preventing DDoS attacks by

identifier/locator separation,” IEEE Network, pp. 60–65, 2013.
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