1,222 research outputs found

    The growth rate over trees of any family of set defined by a monadic second order formula is semi-computable

    Full text link
    Monadic second order logic can be used to express many classical notions of sets of vertices of a graph as for instance: dominating sets, induced matchings, perfect codes, independent sets or irredundant sets. Bounds on the number of sets of any such family of sets are interesting from a combinatorial point of view and have algorithmic applications. Many such bounds on different families of sets over different classes of graphs are already provided in the literature. In particular, Rote recently showed that the number of minimal dominating sets in trees of order nn is at most 95n1395^{\frac{n}{13}} and that this bound is asymptotically sharp up to a multiplicative constant. We build on his work to show that what he did for minimal dominating sets can be done for any family of sets definable by a monadic second order formula. We first show that, for any monadic second order formula over graphs that characterizes a given kind of subset of its vertices, the maximal number of such sets in a tree can be expressed as the \textit{growth rate of a bilinear system}. This mostly relies on well known links between monadic second order logic over trees and tree automata and basic tree automata manipulations. Then we show that this "growth rate" of a bilinear system can be approximated from above.We then use our implementation of this result to provide bounds on the number of independent dominating sets, total perfect dominating sets, induced matchings, maximal induced matchings, minimal perfect dominating sets, perfect codes and maximal irredundant sets on trees. We also solve a question from D. Y. Kang et al. regarding rr-matchings and improve a bound from G\'orska and Skupie\'n on the number of maximal matchings on trees. Remark that this approach is easily generalizable to graphs of bounded tree width or clique width (or any similar class of graphs where tree automata are meaningful)

    Betti diagrams from graphs

    Full text link
    The emergence of Boij-S\"oderberg theory has given rise to new connections between combinatorics and commutative algebra. Herzog, Sharifan, and Varbaro recently showed that every Betti diagram of an ideal with a k-linear minimal resolution arises from that of the Stanley-Reisner ideal of a simplicial complex. In this paper, we extend their result for the special case of 2-linear resolutions using purely combinatorial methods. Specifically, we show bijective correspondences between Betti diagrams of ideals with 2-linear resolutions, threshold graphs, and anti-lecture hall compositions. Moreover, we prove that any Betti diagram of a module with a 2-linear resolution is realized by a direct sum of Stanley-Reisner rings associated to threshold graphs. Our key observation is that these objects are the lattice points in a normal reflexive lattice polytope.Comment: To appear in Algebra and Number Theory, 15 pages, 7 figure

    Central limit theorems for Gaussian polytopes

    Get PDF
    Choose nn random, independent points in Rd\R^d according to the standard normal distribution. Their convex hull KnK_n is the {\sl Gaussian random polytope}. We prove that the volume and the number of faces of KnK_n satisfy the central limit theorem, settling a well known conjecture in the field.Comment: to appear in Annals of Probabilit
    • …
    corecore