11 research outputs found

    Distributed and Collaborative Processing of Audio Signals: Algorithms, Tools and Applications

    Full text link
    Tesis por compendio[ES] Esta tesis se enmarca en el campo de las Tecnologías de la Información y las Comunicaciones (TIC), especialmente en el área del procesado digital de la señal. En la actualidad, y debido al auge del Internet de los cosas (IoT), existe un creciente interés por las redes de sensores inalámbricos (WSN), es decir, redes compuestas de diferentes tipos de dispositivos específicamente distribuidos en una determinada zona para realizar diferentes tareas de procesado de señal. Estos dispositivos o nodos suelen estar equipados con transductores electroacústicos así como con potentes y eficientes procesadores con capacidad de comunicación. En el caso particular de las redes de sensores acústicos (ASN), los nodos se dedican a resolver diferentes tareas de procesado de señales acústicas. El desarrollo de potentes sistemas de procesado centralizado han permitido aumentar el número de canales de audio, ampliar el área de control o implementar algoritmos más complejos. En la mayoría de los casos, una topología de ASN distribuida puede ser deseable debido a varios factores tales como el número limitado de canales utilizados por los dispositivos de adquisición y reproducción de audio, la conveniencia de un sistema escalable o las altas exigencias computacionales de los sistemas centralizados. Todos estos aspectos pueden llevar a la utilización de nuevas técnicas de procesado distribuido de señales con el fin de aplicarlas en ASNs. Para ello, una de las principales aportaciones de esta tesis es el desarrollo de algoritmos de filtrado adaptativo para sistemas de audio multicanal en redes distribuidas. Es importante tener en cuenta que, para aplicaciones de control del campo sonoro (SFC), como el control activo de ruido (ANC) o la ecualización activa de ruido (ANE), los nodos acústicos deben estar equipados con actuadores con el fin de controlar y modificar el campo sonoro. Sin embargo, la mayoría de las propuestas de redes distribuidas adaptativas utilizadas para resolver problemas de control del campo sonoro no tienen en cuenta que los nodos pueden interferir o modificar el comportamiento del resto. Por lo tanto, otra contribución destacable de esta tesis se centra en el análisis de cómo el sistema acústico afecta el comportamiento de los nodos dentro de una ASN. En los casos en que el entorno acústico afecta negativamente a la estabilidad del sistema, se han propuesto varias estrategias distribuidas para resolver el problema de interferencia acústica con el objetivo de estabilizar los sistemas de ANC. En el diseño de los algoritmos distribuidos también se han tenido en cuenta aspectos de implementación práctica. Además, con el objetivo de crear perfiles de ecualización diferentes en zonas de escucha independientes en presencia de ruidos multitonales, se han presentado varios algoritmos distribuidos de ANE en banda estrecha y banda ancha sobre una ASN con una comunicación colaborativa y compuesta por nodos acústicos. Se presentan además resultados experimentales para validar el uso de los algoritmos distribuidos propuestos en el trabajo para aplicaciones prácticas. Para ello, se ha diseñado un software de simulación acústica que permite analizar el rendimiento de los algoritmos desarrollados en la tesis. Finalmente, se ha realizado una implementación práctica que permite ejecutar aplicaciones multicanal de SFC. Para ello, se ha desarrollado un prototipo en tiempo real que controla las aplicaciones de ANC y ANE utilizando nodos acústicos colaborativos. El prototipo consiste en dos sistemas de control de audio personalizado (PAC) compuestos por un asiento de coche y un nodo acústico, el cual está equipado con dos altavoces, dos micrófonos y un procesador con capacidad de comunicación entre los dos nodos. De esta manera, es posible crear dos zonas independientes de control de ruido que mejoran el confort acústico del usuario sin necesidad de utilizar auriculares.[CA] Aquesta tesi s'emmarca en el camp de les Tecnologies de la Informació i les Comunicacions (TIC), especialment en l'àrea del processament digital del senyal. En l'actualitat, i a causa de l'auge de la Internet dels coses (IoT), existeix un creixent interés per les xarxes de sensors sense fils (WSN), és a dir, xarxes compostes de diferents tipus de dispositius específicament distribuïts en una determinada zona per a fer diferents tasques de processament de senyal. Aquests dispositius o nodes solen estar equipats amb transductors electroacústics així com amb potents i eficients processadors amb capacitat de comunicació. En el cas particular de les xarxes de sensors acústics (ASN), els nodes es dediquen a resoldre diferents tasques de processament de senyals acústics. El desenvolupament de potents sistemes de processament centralitzat han permés augmentar el nombre de canals d'àudio, ampliar l'àrea de control o implementar algorismes més complexos. En la majoria dels casos, una topologia de ASN distribuïda pot ser desitjable a causa de diversos factors tals com el nombre limitat de canals utilitzats pels dispositius d'adquisició i reproducció d'àudio, la conveniència d'un sistema escalable o les altes exigències computacionals dels sistemes centralitzats. Tots aquests aspectes poden portar a la utilització de noves tècniques de processament distribuït de senyals amb la finalitat d'aplicar-les en ASNs. Per a això, una de les principals aportacions d'aquesta tesi és el desenvolupament d'algorismes de filtrat adaptatiu per a sistemes d'àudio multicanal en xarxes distribuïdes. És important tindre en compte que, per a aplicacions de control del camp sonor (SFC), com el control actiu de soroll (ANC) o l'equalització activa de soroll (ANE), els nodes acústics han d'estar equipats amb actuadors amb la finalitat de controlar i modificar el camp sonor. No obstant això, la majoria de les propostes de xarxes distribuïdes adaptatives utilitzades per a resoldre problemes de control del camp sonor no tenen en compte que els nodes poden modificar el comportament de la resta. Per tant, una altra contribució destacable d'aquesta tesi se centra en l'anàlisi de com el sistema acústic afecta el comportament dels nodes dins d'una ASN. En els casos en què l'entorn acústic afecta negativament a l'estabilitat del sistema, s'han proposat diverses estratègies distribuïdes per a resoldre el problema d'interferència acústica amb l'objectiu d'estabilitzar els sistemes de ANC. En el disseny dels algorismes distribuïts també s'han tingut en compte aspectes d'implementació pràctica. A més, amb l'objectiu de crear perfils d'equalització diferents en zones d'escolta independents en presència de sorolls multitonales, s'han presentat diversos algorismes distribuïts de ANE en banda estreta i banda ampla sobre una ASN amb una comunicació col·laborativa i composta per nodes acústics. Es presenten a més resultats experimentals per a validar l'ús dels algorismes distribuïts proposats en el treball per a aplicacions pràctiques. Per a això, s'ha dissenyat un programari de simulació acústica que permet analitzar el rendiment dels algorismes desenvolupats en la tesi. Finalment, s'ha realitzat una implementació pràctica que permet executar aplicacions multicanal de SFC. Per a això, s'ha desenvolupat un prototip en temps real que controla les aplicacions de ANC i ANE utilitzant nodes acústics col·laboratius. El prototip consisteix en dos sistemes de control d'àudio personalitzat (PAC) compostos per un seient de cotxe i un node acústic, el qual està equipat amb dos altaveus, dos micròfons i un processador amb capacitat de comunicació entre els dos nodes. D'aquesta manera, és possible crear dues zones independents de control de soroll que milloren el confort acústic de l'usuari sense necessitat d'utilitzar auriculars.[EN] This thesis fits into the field of Information and Communications Technology (ICT), especially in the area of digital signal processing. Nowadays and due to the rise of the Internet of Things (IoT), there is a growing interest in wireless sensor networks (WSN), that is, networks composed of different types of devices specifically distributed in some area to perform different signal processsing tasks. These devices, also referred to as nodes, are usually equipped with electroacoustic transducers as well as powerful and efficient processors with communication capability. In the particular case of acoustic sensor networks (ASN), nodes are dedicated to solving different acoustic signal processing tasks. These audio signal processing applications have been undergone a major development in recent years due in part to the advances made in computer hardware and software. The development of powerful centralized processing systems has allowed the number of audio channels to be increased, the control area to be extended or more complex algorithmms to be implemented. In most cases, a distributed ASN topology can be desirable due to several factors such as the limited number of channels used by the sound acquisition and reproduction devices, the convenience of a scalable system or the high computational demands of a centralized fashion. All these aspects may lead to the use of novel distributed signal processing techniques with the aim to be applied over ASNs. To this end, one of the main contributions of this dissertation is the development of adaptive filtering algorithms for multichannel sound systems over distributed networks. Note that, for sound field control (SFC) applications, such as active noise control (ANC) or active noise equalization (ANE), acoustic nodes must be not only equipped with sensors but also with actuators in order to control and modify the sound field. However, most of the adaptive distributed networks approaches used to solve soundfield control problems do not take into account that the nodes may interfere or modify the behaviour of the rest. Therefore, other important contribution of this thesis is focused on analyzing how the acoustic system affects the behavior of the nodes within an ASN. In cases where the acoustic environment adversely affects the system stability, several distributed strategies have been proposed for solving the acoustic interference problem with the aim to stabilize ANC control systems. These strategies are based on both collaborative and non-collaborative approaches. Implementation aspects such as hardware constraints, sensor locations, convergenge rate or computational and communication burden, have been also considered on the design of the distributed algorithms. Moreover and with the aim to create independent-zone equalization profiles in the presence of multi-tonal noises, distributed narrowband and broadband ANE algorithms over an ASN with a collaborative learning and composed of acoustic nodes have been presented. Experimental results are presented to validate the use of the distributed algorithms proposed in the work for practical applications. For this purpose, an acoustic simulation software has been specifically designed to analyze the performance of the developed algorithms. Finally, the performance of the proposed distributed algorithms for multichannel SFC applications has been evaluated by means of a real practical implementation. To this end, a real-time prototype that controls both ANC and ANE applications by using collaborative acoustic nodes has been developed. The prototype consists of two personal audio control (PAC) systems composed of a car seat and an acoustic node, which is equipped with two loudspeakers, two microphones and a processor with communications capability. In this way, it is possible to create two independent noise control zones improving the acoustic comfort of the user without the use of headphones.Antoñanzas Manuel, C. (2019). Distributed and Collaborative Processing of Audio Signals: Algorithms, Tools and Applications [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/130209TESISCompendi

    Beiträge zu breitbandigen Freisprechsystemen und ihrer Evaluation

    Get PDF
    This work deals with the advancement of wideband hands-free systems (HFS’s) for mono- and stereophonic cases of application. Furthermore, innovative contributions to the corr. field of quality evaluation are made. The proposed HFS approaches are based on frequency-domain adaptive filtering for system identification, making use of Kalman theory and state-space modeling. Functional enhancement modules are developed in this work, which improve one or more of key quality aspects, aiming at not to harm others. In so doing, these modules can be combined in a flexible way, dependent on the needs at hand. The enhanced monophonic HFS is evaluated according to automotive ITU-T recommendations, to prove its customized efficacy. Furthermore, a novel methodology and techn. framework are introduced in this work to improve the prototyping and evaluation process of automotive HF and in-car-communication (ICC) systems. The monophonic HFS in several configurations hereby acts as device under test (DUT) and is thoroughly investigated, which will show the DUT’s satisfying performance, as well as the advantages of the proposed development process. As current methods for the evaluation of HFS’s in dynamic conditions oftentimes still lack flexibility, reproducibility, and accuracy, this work introduces “Car in a Box” (CiaB) as a novel, improved system for this demanding task. It is able to enhance the development process by performing high-resolution system identification of dynamic electro-acoustical systems. The extracted dyn. impulse response trajectories are then applicable to arbitrary input signals in a synthesis operation. A realistic dynamic automotive auralization of a car cabin interior is available for HFS evaluation. It is shown that this system improves evaluation flexibility at guaranteed reproducibility. In addition, the accuracy of evaluation methods can be increased by having access to exact, realistic imp. resp. trajectories acting as a so-called “ground truth” reference. If CiaB is included into an automotive evaluation setup, there is no need for an acoustical car interior prototype to be present at this stage of development. Hency, CiaB may ease the HFS development process. Dynamic acoustic replicas may be provided including an arbitrary number of acoustic car cabin interiors for multiple developers simultaneously. With CiaB, speech enh. system developers therefore have an evaluation environment at hand, which can adequately replace the real environment.Diese Arbeit beschäftigt sich mit der Weiterentwicklung breitbandiger Freisprechsysteme für mono-/stereophone Anwendungsfälle und liefert innovative Beiträge zu deren Qualitätsmessung. Die vorgestellten Verfahren basieren auf im Frequenzbereich adaptierenden Algorithmen zur Systemidentifikation gemäß Kalman-Theorie in einer Zustandsraumdarstellung. Es werden funktionale Erweiterungsmodule dahingehend entwickelt, dass mindestens eine Qualitätsanforderung verbessert wird, ohne andere eklatant zu verletzen. Diese nach Anforderung flexibel kombinierbaren algorithmischen Erweiterungen werden gemäß Empfehlungen der ITU-T (Rec. P.1110/P.1130) in vorwiegend automotiven Testszenarien getestet und somit deren zielgerichtete Wirksamkeit bestätigt. Es wird eine Methodensammlung und ein technisches System zur verbesserten Prototypentwicklung/Evaluation von automotiven Freisprech- und Innenraumkommunikationssystemen vorgestellt und beispielhaft mit dem monophonen Freisprechsystem in diversen Ausbaustufen zur Anwendung gebracht. Daraus entstehende Vorteile im Entwicklungs- und Testprozess von Sprachverbesserungssystem werden dargelegt und messtechnisch verifiziert. Bestehende Messverfahren zum Verhalten von Freisprechsystemen in zeitvarianten Umgebungen zeigten bisher oft nur ein unzureichendes Maß an Flexibilität, Reproduzierbarkeit und Genauigkeit. Daher wird hier das „Car in a Box“-Verfahren (CiaB) entwickelt und vorgestellt, mit dem zeitvariante elektro-akustische Systeme technisch identifiziert werden können. So gewonnene dynamische Impulsantworten können im Labor in einer Syntheseoperation auf beliebige Eingangsignale angewandt werden, um realistische Testsignale unter dyn. Bedingungen zu erzeugen. Bei diesem Vorgehen wird ein hohes Maß an Flexibilität bei garantierter Reproduzierbarkeit erlangt. Es wird gezeigt, dass die Genauigkeit von darauf basierenden Evaluationsverfahren zudem gesteigert werden kann, da mit dem Vorliegen von exakten, realen Impulsantworten zu jedem Zeitpunkt der Messung eine sogenannte „ground truth“ als Referenz zur Verfügung steht. Bei der Einbindung von CiaB in einen Messaufbau für automotive Freisprechsysteme ist es bedeutsam, dass zu diesem Zeitpunkt das eigentliche Fahrzeug nicht mehr benötigt wird. Es wird gezeigt, dass eine dyn. Fahrzeugakustikumgebung, wie sie im Entwicklungsprozess von automotiven Sprachverbesserungsalgorithmen benötigt wird, in beliebiger Anzahl vollständig und mind. gleichwertig durch CiaB ersetzt werden kann

    Blockwise Frequency Domain Active Noise Controller Over Distributed Networks

    Full text link
    © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/).This work presents a practical active noise control system composed of distributed and collaborative acoustic nodes. To this end, experimental tests have been carried out in a listening room with acoustic nodes equipped with loudspeakers and microphones. The communication among the nodes is simulated by software. We have considered a distributed algorithm based on the Filtered-x Least Mean Square (FxLMS) method that introduces collaboration between nodes following an incremental strategy. For improving the processing efficiency in practical scenarios where data acquisition systems work by blocks of samples, the frequency-domain partitioned block technique has been used. Implementation aspects such as computational complexity, processing time of the network and convergence of the algorithm have been analyzed. Experimental results show that, without constraints in the network communications, the proposed distributed algorithm achieves the same performance as the centralized version. The performance of the proposed algorithm over a network with a given communication delay is also included.This work has been supported by the European Union (European Regional Development Fund) together with Spanish Government through TEC2015-67387-C4-1-R project, the grant BES-2013-063783 and Generalitat Valenciana through the PROMETEOII/2014/003 project.Antoñanzas-Manuel, C.; Ferrer Contreras, M.; Diego Antón, MD.; Gonzalez, A. (2016). Blockwise Frequency Domain Active Noise Controller Over Distributed Networks. Applied Sciences. 6(5). https://doi.org/10.3390/app6050124S1246

    Adaptive signal processing for multichannel sound using high performance computing

    Full text link
    [EN] The field of audio signal processing has undergone a major development in recent years. Both the consumer and professional marketplaces continue to show growth in audio applications such as immersive audio schemes that offer optimal listening experience, intelligent noise reduction in cars or improvements in audio teleconferencing or hearing aids. The development of these applications has a common interest in increasing or improving the number of discrete audio channels, the quality of the audio or the sophistication of the algorithms. This often gives rise to problems of high computational cost, even when using common signal processing algorithms, mainly due to the application of these algorithms to multiple signals with real-time requirements. The field of High Performance Computing (HPC) based on low cost hardware elements is the bridge needed between the computing problems and the real multimedia signals and systems that lead to user's applications. In this sense, the present thesis goes a step further in the development of these systems by using the computational power of General Purpose Graphics Processing Units (GPGPUs) to exploit the inherent parallelism of signal processing for multichannel audio applications. The increase of the computational capacity of the processing devices has been historically linked to the number of transistors in a chip. However, nowadays the improvements in the computational capacity are mainly given by increasing the number of processing units and using parallel processing. The Graphics Processing Units (GPUs), which have now thousands of computing cores, are a representative example. The GPUs were traditionally used to graphic or image processing, but new releases in the GPU programming environments such as CUDA have allowed the use of GPUS for general processing applications. Hence, the use of GPUs is being extended to a wide variety of intensive-computation applications among which audio processing is included. However, the data transactions between the CPU and the GPU and viceversa have questioned the viability of the use of GPUs for audio applications in which real-time interaction between microphones and loudspeakers is required. This is the case of the adaptive filtering applications, where an efficient use of parallel computation in not straightforward. For these reasons, up to the beginning of this thesis, very few publications had dealt with the GPU implementation of real-time acoustic applications based on adaptive filtering. Therefore, this thesis aims to demonstrate that GPUs are totally valid tools to carry out audio applications based on adaptive filtering that require high computational resources. To this end, different adaptive applications in the field of audio processing are studied and performed using GPUs. This manuscript also analyzes and solves possible limitations in each GPU-based implementation both from the acoustic point of view as from the computational point of view.[ES] El campo de procesado de señales de audio ha experimentado un desarrollo importante en los últimos años. Tanto el mercado de consumo como el profesional siguen mostrando un crecimiento en aplicaciones de audio, tales como: los sistemas de audio inmersivo que ofrecen una experiencia de sonido óptima, los sistemas inteligentes de reducción de ruido en coches o las mejoras en sistemas de teleconferencia o en audífonos. El desarrollo de estas aplicaciones tiene un propósito común de aumentar o mejorar el número de canales de audio, la propia calidad del audio o la sofisticación de los algoritmos. Estas mejoras suelen dar lugar a sistemas de alto coste computacional, incluso usando algoritmos comunes de procesado de señal. Esto se debe principalmente a que los algoritmos se suelen aplicar a sistemas multicanales con requerimientos de procesamiento en tiempo real. El campo de la Computación de Alto Rendimiento basado en elementos hardware de bajo coste es el puente necesario entre los problemas de computación y los sistemas multimedia que dan lugar a aplicaciones de usuario. En este sentido, la presente tesis va un paso más allá en el desarrollo de estos sistemas mediante el uso de la potencia de cálculo de las Unidades de Procesamiento Gráfico (GPU) en aplicaciones de propósito general. Con ello, aprovechamos la inherente capacidad de paralelización que poseen las GPU para procesar señales de audio y obtener aplicaciones de audio multicanal. El aumento de la capacidad computacional de los dispositivos de procesado ha estado vinculado históricamente al número de transistores que había en un chip. Sin embargo, hoy en día, las mejoras en la capacidad computacional se dan principalmente por el aumento del número de unidades de procesado y su uso para el procesado en paralelo. Las GPUs son un ejemplo muy representativo. Hoy en día, las GPUs poseen hasta miles de núcleos de computación. Tradicionalmente, las GPUs se han utilizado para el procesado de gráficos o imágenes. Sin embargo, la aparición de entornos sencillos de programación GPU, como por ejemplo CUDA, han permitido el uso de las GPU para aplicaciones de procesado general. De ese modo, el uso de las GPU se ha extendido a una amplia variedad de aplicaciones que requieren cálculo intensivo. Entre esta gama de aplicaciones, se incluye el procesado de señales de audio. No obstante, las transferencias de datos entre la CPU y la GPU y viceversa pusieron en duda la viabilidad de las GPUs para aplicaciones de audio en las que se requiere una interacción en tiempo real entre micrófonos y altavoces. Este es el caso de las aplicaciones basadas en filtrado adaptativo, donde el uso eficiente de la computación en paralelo no es sencillo. Por estas razones, hasta el comienzo de esta tesis, había muy pocas publicaciones que utilizaran la GPU para implementaciones en tiempo real de aplicaciones acústicas basadas en filtrado adaptativo. A pesar de todo, esta tesis pretende demostrar que las GPU son herramientas totalmente válidas para llevar a cabo aplicaciones de audio basadas en filtrado adaptativo que requieran elevados recursos computacionales. Con este fin, la presente tesis ha estudiado y desarrollado varias aplicaciones adaptativas de procesado de audio utilizando una GPU como procesador. Además, también analiza y resuelve las posibles limitaciones de cada aplicación tanto desde el punto de vista acústico como desde el punto de vista computacional.[CA] El camp del processament de senyals d'àudio ha experimentat un desenvolupament important als últims anys. Tant el mercat de consum com el professional segueixen mostrant un creixement en aplicacions d'àudio, com ara: els sistemes d'àudio immersiu que ofereixen una experiència de so òptima, els sistemes intel·ligents de reducció de soroll en els cotxes o les millores en sistemes de teleconferència o en audiòfons. El desenvolupament d'aquestes aplicacions té un propòsit comú d'augmentar o millorar el nombre de canals d'àudio, la pròpia qualitat de l'àudio o la sofisticació dels algorismes que s'utilitzen. Això, sovint dóna lloc a sistemes d'alt cost computacional, fins i tot quan es fan servir algorismes comuns de processat de senyal. Això es deu principalment al fet que els algorismes se solen aplicar a sistemes multicanals amb requeriments de processat en temps real. El camp de la Computació d'Alt Rendiment basat en elements hardware de baix cost és el pont necessari entre els problemes de computació i els sistemes multimèdia que donen lloc a aplicacions d'usuari. En aquest sentit, aquesta tesi va un pas més enllà en el desenvolupament d'aquests sistemes mitjançant l'ús de la potència de càlcul de les Unitats de Processament Gràfic (GPU) en aplicacions de propòsit general. Amb això, s'aprofita la inherent capacitat de paral·lelització que posseeixen les GPUs per processar senyals d'àudio i obtenir aplicacions d'àudio multicanal. L'augment de la capacitat computacional dels dispositius de processat ha estat històricament vinculada al nombre de transistors que hi havia en un xip. No obstant, avui en dia, les millores en la capacitat computacional es donen principalment per l'augment del nombre d'unitats de processat i el seu ús per al processament en paral·lel. Un exemple molt representatiu són les GPU, que avui en dia posseeixen milers de nuclis de computació. Tradicionalment, les GPUs s'han utilitzat per al processat de gràfics o imatges. No obstant, l'aparició d'entorns senzills de programació de la GPU com és CUDA, han permès l'ús de les GPUs per a aplicacions de processat general. D'aquesta manera, l'ús de les GPUs s'ha estès a una àmplia varietat d'aplicacions que requereixen càlcul intensiu. Entre aquesta gamma d'aplicacions, s'inclou el processat de senyals d'àudio. No obstant, les transferències de dades entre la CPU i la GPU i viceversa van posar en dubte la viabilitat de les GPUs per a aplicacions d'àudio en què es requereix la interacció en temps real de micròfons i altaveus. Aquest és el cas de les aplicacions basades en filtrat adaptatiu, on l'ús eficient de la computació en paral·lel no és senzilla. Per aquestes raons, fins al començament d'aquesta tesi, hi havia molt poques publicacions que utilitzessin la GPU per implementar en temps real aplicacions acústiques basades en filtrat adaptatiu. Malgrat tot, aquesta tesi pretén demostrar que les GPU són eines totalment vàlides per dur a terme aplicacions d'àudio basades en filtrat adaptatiu que requereixen alts recursos computacionals. Amb aquesta finalitat, en la present tesi s'han estudiat i desenvolupat diverses aplicacions adaptatives de processament d'àudio utilitzant una GPU com a processador. A més, aquest manuscrit també analitza i resol les possibles limitacions de cada aplicació, tant des del punt de vista acústic, com des del punt de vista computacional.Lorente Giner, J. (2015). Adaptive signal processing for multichannel sound using high performance computing [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/58427TESI

    The frequency partitioned block modified filtered-x NLMS with orthogonal correction factors for multichannel Active Noise Control

    Full text link
    The Normalized Least Mean Square (NLMS) algorithm with a filtered-x structure (FxNLMS) is a widely used adaptive algorithm for Active Noise Control (ANC) due to its simplicity and ease of implementation. One of the major drawbacks is its slow convergence. A modified filtered-x structure (MFxNLMS) can be used to moderately improve the speed of convergence, but it does not offer a huge improvement. A greater increase in the speed of convergence can be obtained by using the MFxNLMS algorithm with orthogonal correction factors (M-OCF), but the usage of orthogonal correction factors also increases the computational complexity and limits the usage of the M-OCF in massive real-time applications. However, Graphics Processing Units (GPUs) are well known for their potential for highly parallel data processing. Therefore, GPUs seem to be a suitable platform to ameliorate this computational drawback. In this paper, we propose to derive the M-OCF algorithm to a partitioned block-based version in the frequency domain (FPM-OCF) for multichannel ANC systems in order to better exploit the parallel capabilities of the GPUs. The results show improvements in the convergence rate of the FPM-OCF algorithm in comparison to other NLMS-type algorithms and the usefulness of CPU devices for developing versatile, scalable, and low-cost multichannel ANC systems. (C) 2015 Elsevier Inc. All rights reserved.Lorente Giner, J.; Ferrer Contreras, M.; Diego Antón, MD.; Gonzalez, A. (2015). The frequency partitioned block modified filtered-x NLMS with orthogonal correction factors for multichannel Active Noise Control. Digital Signal Processing. 43:47-58. doi:10.1016/j.dsp.2015.05.003S47584

    System approach to robust acoustic echo cancellation through semi-blind source separation based on independent component analysis

    Get PDF
    We live in a dynamic world full of noises and interferences. The conventional acoustic echo cancellation (AEC) framework based on the least mean square (LMS) algorithm by itself lacks the ability to handle many secondary signals that interfere with the adaptive filtering process, e.g., local speech and background noise. In this dissertation, we build a foundation for what we refer to as the system approach to signal enhancement as we focus on the AEC problem. We first propose the residual echo enhancement (REE) technique that utilizes the error recovery nonlinearity (ERN) to "enhances" the filter estimation error prior to the filter adaptation. The single-channel AEC problem can be viewed as a special case of semi-blind source separation (SBSS) where one of the source signals is partially known, i.e., the far-end microphone signal that generates the near-end acoustic echo. SBSS optimized via independent component analysis (ICA) leads to the system combination of the LMS algorithm with the ERN that allows for continuous and stable adaptation even during double talk. Second, we extend the system perspective to the decorrelation problem for AEC, where we show that the REE procedure can be applied effectively in a multi-channel AEC (MCAEC) setting to indirectly assist the recovery of lost AEC performance due to inter-channel correlation, known generally as the "non-uniqueness" problem. We develop a novel, computationally efficient technique of frequency-domain resampling (FDR) that effectively alleviates the non-uniqueness problem directly while introducing minimal distortion to signal quality and statistics. We also apply the system approach to the multi-delay filter (MDF) that suffers from the inter-block correlation problem. Finally, we generalize the MCAEC problem in the SBSS framework and discuss many issues related to the implementation of an SBSS system. We propose a constrained batch-online implementation of SBSS that stabilizes the convergence behavior even in the worst case scenario of a single far-end talker along with the non-uniqueness condition on the far-end mixing system. The proposed techniques are developed from a pragmatic standpoint, motivated by real-world problems in acoustic and audio signal processing. Generalization of the orthogonality principle to the system level of an AEC problem allows us to relate AEC to source separation that seeks to maximize the independence, hence implicitly the orthogonality, not only between the error signal and the far-end signal, but rather, among all signals involved. The system approach, for which the REE paradigm is just one realization, enables the encompassing of many traditional signal enhancement techniques in analytically consistent yet practically effective manner for solving the enhancement problem in a very noisy and disruptive acoustic mixing environment.PhDCommittee Chair: Biing-Hwang Juang; Committee Member: Brani Vidakovic; Committee Member: David V. Anderson; Committee Member: Jeff S. Shamma; Committee Member: Xiaoli M

    Multichannel Speech Enhancement

    Get PDF

    Cancelación de Ecos Multicanal

    Get PDF
    La idea básica de la cancelación de ecos es bloquear la señal desde la sala remota para que no se realimente. Para ello se coloca un sistema adaptativo en medio que genere “idealmente” la misma señal que proviene de la sala local y se envía de vuelta a la sala remota la diferencia entre la señal estimada y la que retorna de la sala local, en lugar de esta última. La introducción de múltiples canales permite capturar la espacialidad de los locutores pero introduce una alta correlación entre las señales que afecta el comportamiento del cancelador adaptativo. Este inconveniente de mal condicionamiento del sistema, conocido como problema de la no‐unicidad, puede hacer incluso que el sistema adaptativo converja a una solución no única. En la cancelación de ecos multicanal estas soluciones no sólo dependen de las respuestas al impulso de la sala local, sino también de las respuestas al impulso de la sala remota. Las respuestas al impulso de las salas típicas en aplicaciones manos libres, que requieren de la cancelación de ecos, son extremadamente grandes (del orden de miles de coeficientes). La enorme longitud de las respuestas al impulso no sólo se traduce en un gran volumen de operaciones matemáticas sino también en un retardo inadmisible perceptualmente. En la primera parte de esta tesis se estudia el problema de la cancelación de ecos acústicos multicanal. A continuación se exploran y comparan diferentes técnicas de filtrado adaptativo multicanal en la búsqueda de la idoneidad para la aplicación de la cancelación de ecos. Para ello se establecen ocho experimentos: el primero y el cuarto, de un solo canal (caso más simple); el segundo, quinto y séptimo, de dos canales (caso estéreo: más simple del caso multicanal general); el tercero, sexto y octavo, de cinco canales (caso multicanal típico en aplicaciones domésticas y de videoconferencia). Los experimentos son elegidos de manera tal que constituyan casos críticos con una muy elevada correlación inter‐canal para poder estimar el comportamiento de los algoritmos en una situación muy crítica. Estas técnicas de filtrado adaptativo no pueden ser aplicadas directamente a un sistema de cancelación de ecos acústicos multicanal adaptativo por el retardo y la carga computacional que imponen las largas respuestas al impulso acústicas involucradas. Por ello, en la segunda parte de la tesis, se estudian arquitecturas de filtrado adaptativo multirresolución para abordar el problema en el dominio del tiempo y la frecuencia: descomposición en subbandas y filtrado adaptativo en el dominio de la frecuencia particionado por bloques. Por último se hace un estudio para la decorrelación inter‐canal que busca un mejor condicionamiento del problema: la decorrelación mediante la transformación adaptativa de Karhunen‐Loève y la introducción de ruido de banda ancha decorrelado. Esta última técnica permite afrontar el problema de la cancelación de ecos multicanal sin detección de doble locución. Finalmente se intenta buscar una valoración subjetiva de los resultados. En los apéndices se tratan dos temas muy importantes para el desarrollo de esta tesis. El primero trata de la simulación y medición de salas. Ambas técnicas son muy importantes para la cancelación de ecos multicanal porque permiten disponer de respuestas al impulso en diferentes condiciones, correlación, etc. sobre las que basar las simulaciones de los algoritmos desarrollados y analizados en la tesis. La segunda trata de las técnicas de gradiente conjugado que, aunque son un algoritmo de optimización para la minimización de funciones, por su importancia en esta investigación merece un estudio detallado. El uso de las técnicas de gradiente conjugado en la cancelación de ecos acústicos multicanal es uno de los aportes fundamentales de esta investigación y de ello se derivan diferentes algoritmos adaptativos

    Real time realization concepts of large adaptive filters

    Get PDF
    corecore