805 research outputs found

    Stripe-hexagon competition in forced pattern forming systems with broken up-down symmetry

    Full text link
    We investigate the response of two-dimensional pattern forming systems with a broken up-down symmetry, such as chemical reactions, to spatially resonant forcing and propose related experiments. The nonlinear behavior immediately above threshold is analyzed in terms of amplitude equations suggested for a 1:21:2 and 1:11:1 ratio between the wavelength of the spatial periodic forcing and the wavelength of the pattern of the respective system. Both sets of coupled amplitude equations are derived by a perturbative method from the Lengyel-Epstein model describing a chemical reaction showing Turing patterns, which gives us the opportunity to relate the generic response scenarios to a specific pattern forming system. The nonlinear competition between stripe patterns and distorted hexagons is explored and their range of existence, stability and coexistence is determined. Whereas without modulations hexagonal patterns are always preferred near onset of pattern formation, single mode solutions (stripes) are favored close to threshold for modulation amplitudes beyond some critical value. Hence distorted hexagons only occur in a finite range of the control parameter and their interval of existence shrinks to zero with increasing values of the modulation amplitude. Furthermore depending on the modulation amplitude the transition between stripes and distorted hexagons is either sub- or supercritical.Comment: 10 pages, 12 figures, submitted to Physical Review

    Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction

    Get PDF
    The interaction between Hopf and Turing modes has been the subject of active research in recent years. We present here experimental evidence of the existence of mixed Turing-Hopf modes in a two-dimensional system. Using the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) and external constant background illumination as a control parameter, standing spots oscillating in amplitude and with hexagonal ordering were observed. Numerical simulations in the Lengyel-Epstein model for the CDIMA reaction confirmed the results

    Differential susceptibility to noise of mixed Turing and Hopf modes in a photosensitive chemical medium

    Get PDF
    We report on experiments with the photosensitive chlorine dioxide-iodine-malonic acid reaction (CDIMA) when forced with a random (spatiotemporally) distributed illumination. Acting on a mixed mode consisting of oscillating spots, close enough to the Hopf and Turing codimension-two bifurcation, we observe attenuation of oscillations while the spatial pattern is preserved. Numerical simulations confirm and extend these results. All together these observations point out to a larger vulnerability of the Hopf with respect to the Turing mode when facing noise of intermediate intensity and small correlation parameters.Peer ReviewedPostprint (published version

    Instabilities and Patterns in Coupled Reaction-Diffusion Layers

    Full text link
    We study instabilities and pattern formation in reaction-diffusion layers that are diffusively coupled. For two-layer systems of identical two-component reactions, we analyze the stability of homogeneous steady states by exploiting the block symmetric structure of the linear problem. There are eight possible primary bifurcation scenarios, including a Turing-Turing bifurcation that involves two disparate length scales whose ratio may be tuned via the inter-layer coupling. For systems of nn-component layers and non-identical layers, the linear problem's block form allows approximate decomposition into lower-dimensional linear problems if the coupling is sufficiently weak. As an example, we apply these results to a two-layer Brusselator system. The competing length scales engineered within the linear problem are readily apparent in numerical simulations of the full system. Selecting a 2\sqrt{2}:1 length scale ratio produces an unusual steady square pattern.Comment: 13 pages, 5 figures, accepted for publication in Phys. Rev.

    Global asymptotical behavior of the Lengyel-Epstein reaction-diffusion system

    Get PDF
    The Lengyel-Epstein reaction-diffusion system of the CIMA reaction is revisited. We construct a Lyapunov function to show that the constant equilibrium solution is globally asymptotically stable when the feeding rate of iodide is small. We also show that for small spatial domains, all solutions eventually converge to a spatially homogeneous and time-periodic solution. (C) 2008 Elsevier Ltd. All rights reserved

    Synchronization and oscillator death in oscillatory media with stirring

    Get PDF
    The effect of stirring in an inhomogeneous oscillatory medium is investigated. We show that the stirring rate can control the macroscopic behavior of the system producing collective oscillations (synchronization) or complete quenching of the oscillations (oscillator death). We interpret the homogenization rate due to mixing as a measure of global coupling and compare the phase diagrams of stirred oscillatory media and of populations of globally coupled oscillators.Comment: to appear in Phys. Rev. Let
    • …
    corecore