20,401 research outputs found

    Entanglement of purification: from spin chains to holography

    Full text link
    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.Comment: 40 pages, multiple figures. v2: references added, typos correcte

    Cross-level Validation of Topological Quantum Circuits

    Full text link
    Quantum computing promises a new approach to solving difficult computational problems, and the quest of building a quantum computer has started. While the first attempts on construction were succesful, scalability has never been achieved, due to the inherent fragile nature of the quantum bits (qubits). From the multitude of approaches to achieve scalability topological quantum computing (TQC) is the most promising one, by being based on an flexible approach to error-correction and making use of the straightforward measurement-based computing technique. TQC circuits are defined within a large, uniform, 3-dimensional lattice of physical qubits produced by the hardware and the physical volume of this lattice directly relates to the resources required for computation. Circuit optimization may result in non-intuitive mismatches between circuit specification and implementation. In this paper we introduce the first method for cross-level validation of TQC circuits. The specification of the circuit is expressed based on the stabilizer formalism, and the stabilizer table is checked by mapping the topology on the physical qubit level, followed by quantum circuit simulation. Simulation results show that cross-level validation of error-corrected circuits is feasible.Comment: 12 Pages, 5 Figures. Comments Welcome. RC2014, Springer Lecture Notes on Computer Science (LNCS) 8507, pp. 189-200. Springer International Publishing, Switzerland (2014), Y. Shigeru and M.Shin-ichi (Eds.

    Classification of topologically protected gates for local stabilizer codes

    Full text link
    Given a quantum error correcting code, an important task is to find encoded operations that can be implemented efficiently and fault-tolerantly. In this Letter we focus on topological stabilizer codes and encoded unitary gates that can be implemented by a constant-depth quantum circuit. Such gates have a certain degree of protection since propagation of errors in a constant-depth circuit is limited by a constant size light cone. For the 2D geometry we show that constant-depth circuits can only implement a finite group of encoded gates known as the Clifford group. This implies that topological protection must be "turned off" for at least some steps in the computation in order to achieve universality. For the 3D geometry we show that an encoded gate U is implementable by a constant-depth circuit only if the image of any Pauli operator under conjugation by U belongs to the Clifford group. This class of gates includes some non-Clifford gates such as the \pi/8 rotation. Our classification applies to any stabilizer code with geometrically local stabilizers and sufficiently large code distance.Comment: 6 pages, 2 figure

    Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence

    Get PDF
    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed by Almheiri et. al in arXiv:1411.7041.Comment: 40 Pages + 25 Pages of Appendices. 38 figures. Typos and bibliographic amendments and minor correction

    Algebraic geometric construction of a quantum stabilizer code

    Get PDF
    The stabilizer code is the most general algebraic construction of quantum error-correcting codes proposed so far. A stabilizer code can be constructed from a self-orthogonal subspace of a symplectic space over a finite field. We propose a construction method of such a self-orthogonal space using an algebraic curve. By using the proposed method we construct an asymptotically good sequence of binary stabilizer codes. As a byproduct we improve the Ashikhmin-Litsyn-Tsfasman bound of quantum codes. The main results in this paper can be understood without knowledge of quantum mechanics.Comment: LaTeX2e, 12 pages, 1 color figure. A decoding method was added and several typographical errors were corrected in version 2. The description of the decoding problem was completely wrong in version 1. In version 1 and 2, there was a critical miscalculation in the estimation of parameters of codes, and the constructed sequence of codes turned out to be worse than existing ones. The asymptotically best sequence of quantum codes was added in version 3. Section 3.2 appeared in IEEE Transactions on Information Theory, vol. 48, no. 7, pp. 2122-2124, July 200
    corecore