7,278 research outputs found

    On mixed radial Moore graphs of diameter 3

    Full text link
    Radial Moore graphs and digraphs are extremal graphs related to the Moore ones where the distance-preserving spanning tree is preserved for some vertices. This leads to classify them according to their proximity to being a Moore graph or digraph. In this paper we deal with mixed radial Moore graphs, where the mixed setting allows edges and arcs as different elements. An exhaustive computer search shows the top ranked graphs for an specific set of parameters. Moreover, we study the problem of their existence by providing two infinite families for different values of the degrees and diameter 33. One of these families turns out to be optimal

    Radially Moore graphs of radius three and large odd degree

    Get PDF
    Extremal graphs which are close related to Moore graphs have been defined in different ways. Radially Moore graphs are one of these examples of extremal graphs. Although it is proved that radially Moore graphs exist for radius two, the general problem remains open. Knor, and independently Exoo, gives some constructions of these extremal graphs for radius three and small degrees. As far as we know, some few examples have been found for other small values of the degree and the radius. Here, we consider the existence problem of radially Moore graphs of radius three. We use the generalized undirected de Bruijn graphs to give a general construction of radially Moore graphs of radius three and large odd degree.Peer Reviewe

    The boundary action of a sofic random subgroup of the free group

    Full text link
    We prove that the boundary action of a sofic random subgroup of a finitely generated free group is conservative. This addresses a question asked by Grigorchuk, Kaimanovich, and Nagnibeda, who studied the boundary actions of individual subgroups of the free group. Following their work, we also investigate the cogrowth and various limit sets associated to sofic random subgroups. We make heavy use of the correspondence between subgroups and their Schreier graphs, and central to our approach is an investigation of the asymptotic density of a given set inside of large neighborhoods of the root of a sofic random Schreier graph.Comment: 21 pages, 2 figures, made minor corrections, to appear in Groups, Geometry, and Dynamic

    Hyperbolic Geometry of Complex Networks

    Full text link
    We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as non-interacting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure

    Popularity versus Similarity in Growing Networks

    Full text link
    Popularity is attractive -- this is the formula underlying preferential attachment, a popular explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections that nodes have follows power laws observed in many real networks. Preferential attachment has been directly validated for some real networks, including the Internet. Preferential attachment can also be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks, or duplication. Here we show that popularity is just one dimension of attractiveness. Another dimension is similarity. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which popularity preference emerges from local optimization. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon

    Random planar graphs and the London street network

    Get PDF
    In this paper we analyse the street network of London both in its primary and dual representation. To understand its properties, we consider three idealised models based on a grid, a static random planar graph and a growing random planar graph. Comparing the models and the street network, we find that the streets of London form a self-organising system whose growth is characterised by a strict interaction between the metrical and informational space. In particular, a principle of least effort appears to create a balance between the physical and the mental effort required to navigate the city

    Progress in extra-solar planet detection

    Get PDF
    Progress in extra-solar planet detection is reviewed. The following subject areas are covered: (1) the definition of a planet; (2) the weakness of planet signals; (3) direct techniques - imaging and spectral detection; and (4) indirect techniques - reflex motion and occultations
    corecore