272 research outputs found

    Outlier robust system identification: a Bayesian kernel-based approach

    Full text link
    In this paper, we propose an outlier-robust regularized kernel-based method for linear system identification. The unknown impulse response is modeled as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. To build robustness to outliers, we model the measurement noise as realizations of independent Laplacian random variables. The identification problem is cast in a Bayesian framework, and solved by a new Markov Chain Monte Carlo (MCMC) scheme. In particular, exploiting the representation of the Laplacian random variables as scale mixtures of Gaussians, we design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods.Comment: 5 figure

    Bayesian kernel-based system identification with quantized output data

    Full text link
    In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo (MCMC) methods to provide an estimate of the system. In particular, we show how to design a Gibbs sampler which quickly converges to the target distribution. Numerical simulations show a substantial improvement in the accuracy of the estimates over state-of-the-art kernel-based methods when employed in identification of systems with quantized data.Comment: Submitted to IFAC SysId 201

    A Bayesian Approach to Sparse plus Low rank Network Identification

    Full text link
    We consider the problem of modeling multivariate time series with parsimonious dynamical models which can be represented as sparse dynamic Bayesian networks with few latent nodes. This structure translates into a sparse plus low rank model. In this paper, we propose a Gaussian regression approach to identify such a model

    Regularized Nonparametric Volterra Kernel Estimation

    Full text link
    In this paper, the regularization approach introduced recently for nonparametric estimation of linear systems is extended to the estimation of nonlinear systems modelled as Volterra series. The kernels of order higher than one, representing higher dimensional impulse responses in the series, are considered to be realizations of multidimensional Gaussian processes. Based on this, prior information about the structure of the Volterra kernel is introduced via an appropriate penalization term in the least squares cost function. It is shown that the proposed method is able to deliver accurate estimates of the Volterra kernels even in the case of a small amount of data points

    Reweighted nuclear norm regularization: A SPARSEVA approach

    Full text link
    The aim of this paper is to develop a method to estimate high order FIR and ARX models using least squares with re-weighted nuclear norm regularization. Typically, the choice of the tuning parameter in the reweighting scheme is computationally expensive, hence we propose the use of the SPARSEVA (SPARSe Estimation based on a VAlidation criterion) framework to overcome this problem. Furthermore, we suggest the use of the prediction error criterion (PEC) to select the tuning parameter in the SPARSEVA algorithm. Numerical examples demonstrate the veracity of this method which has close ties with the traditional technique of cross validation, but using much less computations.Comment: This paper is accepted and will be published in The Proceedings of the 17th IFAC Symposium on System Identification (SYSID 2015), Beijing, China, 201

    Regularized system identification using orthonormal basis functions

    Full text link
    Most of existing results on regularized system identification focus on regularized impulse response estimation. Since the impulse response model is a special case of orthonormal basis functions, it is interesting to consider if it is possible to tackle the regularized system identification using more compact orthonormal basis functions. In this paper, we explore two possibilities. First, we construct reproducing kernel Hilbert space of impulse responses by orthonormal basis functions and then use the induced reproducing kernel for the regularized impulse response estimation. Second, we extend the regularization method from impulse response estimation to the more general orthonormal basis functions estimation. For both cases, the poles of the basis functions are treated as hyperparameters and estimated by empirical Bayes method. Then we further show that the former is a special case of the latter, and more specifically, the former is equivalent to ridge regression of the coefficients of the orthonormal basis functions.Comment: 6 pages, final submission of an contribution for European Control Conference 2015, uploaded on March 20, 201

    Maximum entropy properties of discrete-time first-order stable spline kernel

    Full text link
    The first order stable spline (SS-1) kernel is used extensively in regularized system identification. In particular, the stable spline estimator models the impulse response as a zero-mean Gaussian process whose covariance is given by the SS-1 kernel. In this paper, we discuss the maximum entropy properties of this prior. In particular, we formulate the exact maximum entropy problem solved by the SS-1 kernel without Gaussian and uniform sampling assumptions. Under general sampling schemes, we also explicitly derive the special structure underlying the SS-1 kernel (e.g. characterizing the tridiagonal nature of its inverse), also giving to it a maximum entropy covariance completion interpretation. Along the way similar maximum entropy properties of the Wiener kernel are also given

    Linear system identification using stable spline kernels and PLQ penalties

    Full text link
    The classical approach to linear system identification is given by parametric Prediction Error Methods (PEM). In this context, model complexity is often unknown so that a model order selection step is needed to suitably trade-off bias and variance. Recently, a different approach to linear system identification has been introduced, where model order determination is avoided by using a regularized least squares framework. In particular, the penalty term on the impulse response is defined by so called stable spline kernels. They embed information on regularity and BIBO stability, and depend on a small number of parameters which can be estimated from data. In this paper, we provide new nonsmooth formulations of the stable spline estimator. In particular, we consider linear system identification problems in a very broad context, where regularization functionals and data misfits can come from a rich set of piecewise linear quadratic functions. Moreover, our anal- ysis includes polyhedral inequality constraints on the unknown impulse response. For any formulation in this class, we show that interior point methods can be used to solve the system identification problem, with complexity O(n3)+O(mn2) in each iteration, where n and m are the number of impulse response coefficients and measurements, respectively. The usefulness of the framework is illustrated via a numerical experiment where output measurements are contaminated by outliers.Comment: 8 pages, 2 figure

    A new kernel-based approach to system identification with quantized output data

    Full text link
    In this paper we introduce a novel method for linear system identification with quantized output data. We model the impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo methods to provide an estimate of the system. In particular, we design two methods based on the so-called Gibbs sampler that allow also to estimate the kernel hyperparameters by marginal likelihood maximization via the expectation-maximization method. Numerical simulations show the effectiveness of the proposed scheme, as compared to the state-of-the-art kernel-based methods when these are employed in system identification with quantized data.Comment: 10 pages, 4 figure
    • …
    corecore