543 research outputs found

    The Orientation of Unsymmetrical Molecules at Interfaces

    Get PDF
    A function giving the distribution of the angles of orientation of the molecular axes from the normal to the interface can be obtained if one makes use of a number of special assumptions regarding the forces of orientation. This is compared with the distribution calculated on assuming an extreme form of Langmuir's principle of independent surface action. The importance of having such a function is pointed out

    Conditional Transformation Models

    Full text link
    The ultimate goal of regression analysis is to obtain information about the conditional distribution of a response given a set of explanatory variables. This goal is, however, seldom achieved because most established regression models only estimate the conditional mean as a function of the explanatory variables and assume that higher moments are not affected by the regressors. The underlying reason for such a restriction is the assumption of additivity of signal and noise. We propose to relax this common assumption in the framework of transformation models. The novel class of semiparametric regression models proposed herein allows transformation functions to depend on explanatory variables. These transformation functions are estimated by regularised optimisation of scoring rules for probabilistic forecasts, e.g. the continuous ranked probability score. The corresponding estimated conditional distribution functions are consistent. Conditional transformation models are potentially useful for describing possible heteroscedasticity, comparing spatially varying distributions, identifying extreme events, deriving prediction intervals and selecting variables beyond mean regression effects. An empirical investigation based on a heteroscedastic varying coefficient simulation model demonstrates that semiparametric estimation of conditional distribution functions can be more beneficial than kernel-based non-parametric approaches or parametric generalised additive models for location, scale and shape

    A generalized risk approach to path inference based on hidden Markov models

    Full text link
    Motivated by the unceasing interest in hidden Markov models (HMMs), this paper re-examines hidden path inference in these models, using primarily a risk-based framework. While the most common maximum a posteriori (MAP), or Viterbi, path estimator and the minimum error, or Posterior Decoder (PD), have long been around, other path estimators, or decoders, have been either only hinted at or applied more recently and in dedicated applications generally unfamiliar to the statistical learning community. Over a decade ago, however, a family of algorithmically defined decoders aiming to hybridize the two standard ones was proposed (Brushe et al., 1998). The present paper gives a careful analysis of this hybridization approach, identifies several problems and issues with it and other previously proposed approaches, and proposes practical resolutions of those. Furthermore, simple modifications of the classical criteria for hidden path recognition are shown to lead to a new class of decoders. Dynamic programming algorithms to compute these decoders in the usual forward-backward manner are presented. A particularly interesting subclass of such estimators can be also viewed as hybrids of the MAP and PD estimators. Similar to previously proposed MAP-PD hybrids, the new class is parameterized by a small number of tunable parameters. Unlike their algorithmic predecessors, the new risk-based decoders are more clearly interpretable, and, most importantly, work "out of the box" in practice, which is demonstrated on some real bioinformatics tasks and data. Some further generalizations and applications are discussed in conclusion.Comment: Section 5: corrected denominators of the scaled beta variables (pp. 27-30), => corrections in claims 1, 3, Prop. 12, bottom of Table 1. Decoder (49), Corol. 14 are generalized to handle 0 probabilities. Notation is more closely aligned with (Bishop, 2006). Details are inserted in eqn-s (43); the positivity assumption in Prop. 11 is explicit. Fixed typing errors in equation (41), Example

    Selecting Representative Data Sets

    Get PDF
    corecore