390 research outputs found

    Maritime coverage enhancement using UAVs coordinated with hybrid satellite-terrestrial networks

    Get PDF
    Due to the agile maneuverability, unmanned aerial vehicles (UAVs) have shown great promise for on-demand communications. In practice, UAV-aided aerial base stations are not separate. Instead, they rely on existing satellites/terrestrial systems for spectrum sharing and efficient backhaul. In this case, how to coordinate satellites, UAVs and terrestrial systems is still an open issue. In this paper, we deploy UAVs for coverage enhancement of a hybrid satellite-terrestrial maritime communication network. Using a typical composite channel model including both large-scale and small-scale fading, the UAV trajectory and in-flight transmit power are jointly optimized, subject to constraints on UAV kinematics, tolerable interference, backhaul, and the total energy of the UAV for communications. Different from existing studies, only the location-dependent large-scale channel state information (CSI) is assumed available, because it is difficult to obtain the small-scale CSI before takeoff in practice and the ship positions can be obtained via the dedicated maritime Automatic Identification System. The optimization problem is non-convex. We solve it by using problem decomposition, successive convex optimization and bisection searching tools. Simulation results demonstrate that the UAV fits well with existing satellite and terrestrial systems, using the proposed optimization framework

    Performance analysis of NOMA-based land mobile satellite networks

    Get PDF
    Non-orthogonal multiple access (NOMA) scheme, which has the ability to superpose information in the power domain and serve multiple users on the same time/frequency resource, is regarded as an effective solution to increase transmit rate and fairness. In this paper, we introduce the NOMA scheme in a downlink land mobile satellite (LMS) network and present a comprehensive performance analysis for the considered system. Specifically, we first obtain the power allocation coefficients by maximizing the sum rate while meeting the predefined target rates of each NOMA user. Then, we derive the theoretical expressions for the ergodic capacity and the energy efficiency of the considered system. Moreover, the outage probability (OP) and average symbol error rate performances of NOMA users are derived analytically. To gain further insights, we derive the asymptotic OP at the high signal-to-noise ratio regime to characterize the diversity orders and coding gains of NOMA users. Finally, simulation results are provided to validate the theoretical analysis as well as the superiority of employing the NOMA scheme in the LMS system, and show the impact of key parameters, such as fading configurations and user selection strategy on the performance of NOMA users

    Performance Analysis of NOMA-Based Land Mobile Satellite Networks

    Get PDF
    Non-orthogonal multiple access (NOMA) scheme, which has the ability to superpose information in the power domain and serve multiple users on the same time/frequency resource, is regarded as an effective solution to increase transmit rate and fairness. In this paper, we introduce the NOMA scheme in a downlink land mobile satellite (LMS) network and present a comprehensive performance analysis for the considered system. Specifically, we first obtain the power allocation coefficients by maximizing the sum rate while meeting the predefined target rates of each NOMA user. Then, we derive the theoretical expressions for the ergodic capacity and the energy efficiency of the considered system. Moreover, the outage probability (OP) and average symbol error rate performances of NOMA users are derived analytically. To gain further insights, we derive the asymptotic OP at the high signal-to-noise ratio regime to characterize the diversity orders and coding gains of NOMA users. Finally, simulation results are provided to validate the theoretical analysis as well as the superiority of employing the NOMA scheme in the LMS system, and show the impact of key parameters, such as fading configurations and user selection strategy on the performance of NOMA users

    Hybrid satellite-terrestrial relay network: proposed model and application of power splitting multiple access

    Get PDF
    The development of hybrid satellite-terrestrial relay networks (HSTRNs) is one of the driving forces for revolutionizing satellite communications in the modern era. Although there are many unique features of conventional satellite networks, their evolution pace is much slower than the terrestrial wireless networks. As a result, it is becoming more important to use HSTRNs for the seamless integration of terrestrial cellular and satellite communications. With this intent, this paper provides a comprehensive performance evaluation of HSTRNs employing non-orthogonal multiple access technique. The terrestrial relay is considered to be wireless-powered and harvests energy from the radio signal of the satellite. For the sake of comparison, both amplify-and-forward (AF) and decode-and-forward (DF) relaying protocols are considered. Subsequently, the closed-form expressions of outage probabilities and ergodic capacities are derived for each relaying protocol. Extensive simulations are performed to verify the accuracy of the obtained closed-form expressions. The results provided in this work characterize the outage and capacity performance of such a HSTRN.publishe

    Radio map-based cognitive satellite-UAV networks towards 6G on-demand coverage

    Get PDF

    Energy-efficient optimal power allocation in integrated wireless sensor and cognitive satellite terrestrial networks

    Get PDF
    This paper proposes novel satellite-based wireless sensor networks (WSNs), which integrate the WSN with the cognitive satellite terrestrial network. Having the ability to provide seamless network access and alleviate the spectrum scarcity, cognitive satellite terrestrial networks are considered as a promising candidate for future wireless networks with emerging requirements of ubiquitous broadband applications and increasing demand for spectral resources. With the emerging environmental and energy cost concerns in communication systems, explicit concerns on energy efficient resource allocation in satellite networks have also recently received considerable attention. In this regard, this paper proposes energy-efficient optimal power allocation schemes in the cognitive satellite terrestrial networks for non-real-time and real-time applications, respectively, which maximize the energy efficiency (EE) of the cognitive satellite user while guaranteeing the interference at the primary terrestrial user below an acceptable level. Specifically, average interference power (AIP) constraint is employed to protect the communication quality of the primary terrestrial user while average transmit power (ATP) or peak transmit power (PTP) constraint is adopted to regulate the transmit power of the satellite user. Since the energy-efficient power allocation optimization problem belongs to the nonlinear concave fractional programming problem, we solve it by combining Dinkelbach’s method with Lagrange duality method. Simulation results demonstrate that the fading severity of the terrestrial interference link is favorable to the satellite user who can achieve EE gain under the ATP constraint comparing to the PTP constraint

    Hybrid satellite–terrestrial networks toward 6G : key technologies and open issues

    Get PDF
    Future wireless networks will be required to provide more wireless services at higher data rates and with global coverage. However, existing homogeneous wireless networks, such as cellular and satellite networks, may not be able to meet such requirements individually, especially in remote terrain, including seas and mountains. One possible solution is to use diversified wireless networks that can exploit the inter-connectivity between satellites, aerial base stations (BSs), and terrestrial BSs over inter-connected space, ground, and aerial networks. Hence, enabling wireless communication in one integrated network has attracted both the industry and the research fraternities. In this work, we provide a comprehensive survey of the most recent work on hybrid satellite–terrestrial networks (HSTNs), focusing on system architecture, performance analysis, design optimization, and secure communication schemes for different cooperative and cognitive HSTN network architectures. Different key technologies are compared. Based on this comparison, several open issues for future research are discussed
    • …
    corecore