8,888 research outputs found

    Routing of railway carriages: A case study

    Get PDF
    In the context of organizing timetables for railway companies the following railway carriage routing problem occurs. Given a timetable containing rail links with departure and destination times/stations and the composition of the trains, find a routing of railway carriages such that the required carriages are always available when a train departs. We will present a local search approach for this routing problem for the railway carriages. The approach uses structural properties of an integer multi-commodity network flow formulation of the problem. Computational results for a real world instance are given

    Energy management in communication networks: a journey through modelling and optimization glasses

    Full text link
    The widespread proliferation of Internet and wireless applications has produced a significant increase of ICT energy footprint. As a response, in the last five years, significant efforts have been undertaken to include energy-awareness into network management. Several green networking frameworks have been proposed by carefully managing the network routing and the power state of network devices. Even though approaches proposed differ based on network technologies and sleep modes of nodes and interfaces, they all aim at tailoring the active network resources to the varying traffic needs in order to minimize energy consumption. From a modeling point of view, this has several commonalities with classical network design and routing problems, even if with different objectives and in a dynamic context. With most researchers focused on addressing the complex and crucial technological aspects of green networking schemes, there has been so far little attention on understanding the modeling similarities and differences of proposed solutions. This paper fills the gap surveying the literature with optimization modeling glasses, following a tutorial approach that guides through the different components of the models with a unified symbolism. A detailed classification of the previous work based on the modeling issues included is also proposed

    A vehicle routing model with split delivery and stop nodes

    Get PDF
    In this work, a new variant of the Capacitated Vehicle Routing Problem (CVRP) is presented where the vehicles cannot perform any route leg longer than a given length L (although the routes can be longer). Thus, once a route leg length is close to L, the vehicle must go to a stop node to end the leg or return to the depot. We introduce this condition in a variation of the CVRP, the Split Delivery Vehicle Routing Problem, where multiple visits to a customer by different vehicles are allowed. We present two formulations for this problem which we call Split Delivery Vehicle Routing Problem with Stop Nodes: a vehicle flow formulation and a commodity flow formulation. Because of the complexity of this problem, a heuristic approach is developed. We compare its performance with and without the stop nodesSplit delivery vehicle routing problem, Stop node, Granular neighborhood, Tabu search

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    Navigating Central Path with Electrical Flows: from Flows to Matchings, and Back

    Full text link
    We present an O~(m10/7)=O~(m1.43)\tilde{O}(m^{10/7})=\tilde{O}(m^{1.43})-time algorithm for the maximum s-t flow and the minimum s-t cut problems in directed graphs with unit capacities. This is the first improvement over the sparse-graph case of the long-standing O(mmin(m,n2/3))O(m \min(\sqrt{m},n^{2/3})) time bound due to Even and Tarjan [EvenT75]. By well-known reductions, this also establishes an O~(m10/7)\tilde{O}(m^{10/7})-time algorithm for the maximum-cardinality bipartite matching problem. That, in turn, gives an improvement over the celebrated celebrated O(mn)O(m \sqrt{n}) time bound of Hopcroft and Karp [HK73] whenever the input graph is sufficiently sparse
    corecore