3,563 research outputs found

    Aggressive shadowing of a low-dimensional model of atmospheric dynamics

    Full text link
    Predictions of the future state of the Earth's atmosphere suffer from the consequences of chaos: numerical weather forecast models quickly diverge from observations as uncertainty in the initial state is amplified by nonlinearity. One measure of the utility of a forecast is its shadowing time, informally given by the period of time for which the forecast is a reasonable description of reality. The present work uses the Lorenz 096 coupled system, a simplified nonlinear model of atmospheric dynamics, to extend a recently developed technique for lengthening the shadowing time of a dynamical system. Ensemble forecasting is used to make forecasts with and without inflation, a method whereby the ensemble is regularly expanded artificially along dimensions whose uncertainty is contracting. The first goal of this work is to compare model forecasts, with and without inflation, to a true trajectory created by integrating a modified version of the same model. The second goal is to establish whether inflation can increase the maximum shadowing time for a single optimal member of the ensemble. In the second experiment the true trajectory is known a priori, and only the closest ensemble members are retained at each time step, a technique known as stalking. Finally, a targeted inflation is introduced to both techniques to reduce the number of instances in which inflation occurs in directions likely to be incommensurate with the true trajectory. Results varied for inflation, with success dependent upon the experimental design parameters (e.g. size of state space, inflation amount). However, a more targeted inflation successfully reduced the number of forecast degradations without significantly reducing the number of forecast improvements. Utilized appropriately, inflation has the potential to improve predictions of the future state of atmospheric phenomena, as well as other physical systems.Comment: 14 pages, 16 figure

    Data Assimilation by Artificial Neural Networks for an Atmospheric General Circulation Model: Conventional Observation

    Full text link
    This paper presents an approach for employing artificial neural networks (NN) to emulate an ensemble Kalman filter (EnKF) as a method of data assimilation. The assimilation methods are tested in the Simplified Parameterizations PrimitivE-Equation Dynamics (SPEEDY) model, an atmospheric general circulation model (AGCM), using synthetic observational data simulating localization of balloon soundings. For the data assimilation scheme, the supervised NN, the multilayer perceptrons (MLP-NN), is applied. The MLP-NN are able to emulate the analysis from the local ensemble transform Kalman filter (LETKF). After the training process, the method using the MLP-NN is seen as a function of data assimilation. The NN were trained with data from first three months of 1982, 1983, and 1984. A hind-casting experiment for the 1985 data assimilation cycle using MLP-NN were performed with synthetic observations for January 1985. The numerical results demonstrate the effectiveness of the NN technique for atmospheric data assimilation. The results of the NN analyses are very close to the results from the LETKF analyses, the differences of the monthly average of absolute temperature analyses is of order 0.02. The simulations show that the major advantage of using the MLP-NN is better computational performance, since the analyses have similar quality. The CPU-time cycle assimilation with MLP-NN is 90 times faster than cycle assimilation with LETKF for the numerical experiment.Comment: 17 pages, 16 figures, monthly weather revie
    • …
    corecore