3,830 research outputs found

    Automatic best wireless network selection based on key performance indicators

    Get PDF
    Introducing cognitive mechanisms at the application layer may lead to the possibility of an automatic selection of the wireless network that can guarantee best perceived experience by the final user. This chapter investigates this approach based on the concept of Quality of Experience (QoE), by introducing the use of application layer parameters, namely Key Performance Indicators (KPIs). KPIs are defined for different traffic types based on experimental data. A model for an ap- plication layer cognitive engine is presented, whose goal is to identify and select, based on KPIs, the best wireless network among available ones. An experimenta- tion for the VoIP case, that foresees the use of the One-way end-to-end delay (OED) and the Mean Opinion Score (MOS) as KPIs is presented. This first implementation of the cognitive engine selects the network that, in that specific instant, offers the best QoE based on real captured data. To our knowledge, this is the first example of a cognitive engine that achieves best QoE in a context of heterogeneous wireless networks

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    Flexible QoS Support in DVB-RCS2

    Get PDF
    Postprin

    Mobility: a double-edged sword for HSPA networks

    Get PDF
    This paper presents an empirical study on the performance of mobile High Speed Packet Access (HSPA, a 3.5G cellular standard) networks in Hong Kong via extensive field tests. Our study, from the viewpoint of end users, covers virtually all possible mobile scenarios in urban areas, including subways, trains, off-shore ferries and city buses. We have confirmed that mobility has largely negative impacts on the performance of HSPA networks, as fast-changing wireless environment causes serious service deterioration or even interruption. Meanwhile our field experiment results have shown unexpected new findings and thereby exposed new features of the mobile HSPA networks, which contradict commonly held views. We surprisingly find out that mobility can improve fairness of bandwidth sharing among users and traffic flows. Also the triggering and final results of handoffs in mobile HSPA networks are unpredictable and often inappropriate, thus calling for fast reacting fallover mechanisms. We have conducted in-depth research to furnish detailed analysis and explanations to what we have observed. We conclude that mobility is a double-edged sword for HSPA networks. To the best of our knowledge, this is the first public report on a large scale empirical study on the performance of commercial mobile HSPA networks
    • 

    corecore