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Abstract Introducing cognitive mechanisms at the application layer may lead to
the possibility of an automatic selection of the wireless network that can guarantee
best perceived experience by the final user. This chapter investigates this approach
based on the concept of Quality of Experience (QoE), by introducing the use of
application layer parameters, namely Key Performance Indicators (KPIs). KPIs are
defined for different traffic types based on experimental data. A model for an ap-
plication layer cognitive engine is presented, whose goal is to identify and select,
based on KPIs, the best wireless network among available ones. An experimenta-
tion for the VoIP case, that foresees the use of the One-way end-to-end delay (OED)
and the Mean Opinion Score (MOS) as KPIs is presented. This first implementation
of the cognitive engine selects the network that, in that specific instant, offers the
best QoE based on real captured data. To our knowledge, this is the first example
of a cognitive engine that achieves best QoE in a context of heterogeneous wireless
networks.

Stefano Boldrini
Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza
University of Rome, Rome, Italy, and Department of Telecommunications, Supélec, Gif-sur-
Yvette, France, e-mail: boldrini@newyork.ing.uniroma1.it

Maria-Gabriella Di Benedetto
Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza
University of Rome, Rome, Italy, e-mail: gaby@acts.ing.uniroma1.it

Alessandro Tosti
Telecom Italia, Italy, e-mail: alessandro.tosti@telecomitalia.it

Jocelyn Fiorina
Department of Telecommunications, Supélec, Gif-sur-Yvette, France, e-mail: jocelyn.
fiorina@supelec.fr

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/54495328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
boldrini@newyork.ing.uniroma1.it
gaby@acts.ing.uniroma1.it
alessandro.tosti@telecomitalia.it
jocelyn.fiorina@supelec.fr
jocelyn.fiorina@supelec.fr


2 Boldrini, Di Benedetto, Tosti, Fiorina

1 Introduction

Coexistence of different types of wireless networks is common experience. Widespread
mobile devices use different technologies to communicate and exchange data. In
most cases, when multiple networks are available, that may be based on either same
or different technology, devices may choose the one to use and also possibly migrate
from one network to a different one. This is for example the case when both cellular
and one or more Wi-Fi networks are present.

Several investigations that defined algorithms for migration from a wireless net-
work to another one of a different technology (the so-called vertical handover [1])
do exist. These “traditional” vertical handover algorithms are mainly based on phys-
ical or network layer parameters, or the combination of these two. In particular, Sig-
nal to Noise Ratio (SNR) and Received Signal Strength Indicator (RSSI) are the
most studied and used parameters (even if usually linked to other network layer
parameters) for the handover decision due to their simplicity [2]. This is “paid”,
however, with a lack of reliability in their real networks conditions representation.

Another important aspect is that, by considering lower layer parameters, the de-
cision is taken with an eye on networks conditions; this is of course important, but
only partial. In the process of network selection, more focus should be put, however,
on final user experience, that can be better described and taken into account by the
introduction of application layer parameters.

Moreover, network selection should be performed in an “intelligent” way, i.e. by
adapting final decisions to a variety of factors such as the traffic type for which the
connection needs to be established, networks current conditions and performance,
as well as the used device performance.

This chapter aims at introducing the cognitive principle at the application layer
by performing automatic best network selection based on “Key Performance Indi-
cators”. In other words, the final goal is the selection of the wireless network that
can guarantee the best final user experience, thanks to the introduction of a cognitive
engine that functions at the application layer.

To better understand and visualize this concept, a basic structure of the proposed
model (deeply described in the following sections) is presented in Figure 1.

The chapter is organized as follows. In Section 2 the concept of “Quality of
Experience” is introduced and it is explained how it can be obtained considering
“Key Performance Indicators”; focus is put on the case of Voice over IP traffic type.
Section 3 introduces the cognitive engine, whose behaviour and functionalities are
described in Section 4. Section 5 presents an experimentation of the presented cog-
nitive engine module in the Voice over IP case, while Section 6 contains conclusions
and future work.
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Fig. 1: Basic structure of the proposed cognitive engine.

2 Quality of Experience and KPIs

Quality of Service (QoS) is nowadays a fundamental aspect that Internet Service
Providers (ISPs) have to take into account in order to offer different services with
different guaranteed qualities at different prices. Parameters that are traditionally
considered for QoS belong to physical layer (SNR/RSSI) or network layer (delay,
jitter, throughput and packet loss). These values are the ones from which a QoS
profile or QoS classification is built on. In other words, these parameters determine
a classification in different traffic classes, each one with a different quality.

From the final user point of view, these parameters are only values that charac-
terize its communication. What the user is really interested on, however, is the final
quality perceived and experienced. This aspect is the reason for moving on from
Quality of Service to “Quality of Experience” (QoE) [3], [4]. For example, the de-
lay a network presents is an important factor that has impact on user’s QoE; anyway,
delay itself, considered alone and not in the whole context, does not completely re-
flect the quality the user effectively experiences.

Since the goal of offering a certain level of quality must focus on the final user,
the quality that is effectively experienced must be pursued. There is the need of
parameters that are better able to represent the perceived quality: “Key Performance
Indicators” (KPIs).

KPIs are application layer parameters and therefore are much closer to the truly
experienced quality. Given that these reside on a higher layer of the OSI model, they
include and take into account the previous mentioned parameters, but in a wider
and more comprehensive context. In fact they are able to consider all lower layers
parameters and “synthesize” them by giving them the appropriate “weight” (for
example in a linear combination, as presented in 3) based on the considered traffic
type. SNR, delay, jitter, throughput and packet loss are therefore not important by
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themselves, but as part of more general parameters that incorporate them. Thanks
to a learning process, KPIs are able to include also delays introduced by particular
implementations of softwares and firmwares and specific behaviours of different
devices using different telecom companies, aspects that are proved to be significant
in the final user experience [5].

Until now, by our knowledge, application layer parameters have been introduced
regarding minor aspects and in very specific cases [6], [7]. This chapter proposes to
introduce an extensive use of these parameters for QoE evaluation.

KPIs can be defined for different traffic types, as for example voice commu-
nication, video and audio streaming, and web browsing. Each traffic type has its
own peculiarities and “weaknesses”, and therefore the attention on different aspects
needs to be put based on the traffic type that is under consideration. For example, the
delay a network presents is always important, but the impact it has on voice traffic
type is considerably higher then in the case of web browsing traffic type; a similar
thing can be said when considering jitter.

The identification and definition of the most suitable KPIs and their dependence
on lower layers parameters for each traffic type can be done through an analysis
of traffic data. Thanks to these data, the perceived quality can be correlated to the
different layer parameters that result to be the most relevant (for the traffic type
under consideration) and that therefore need to be considered for the KPIs definition.
Traffic data used in this chapter for the definition of KPIs were provided by one of
the major Italian telecom operator, that actively contributed in this work.

VoIP case

This chapter focuses on “Voice over Internet Protocol” (VoIP) traffic. This traffic
type was specifically investigated because it represents nowadays an increasing rel-
evance in Internet traffic (shown by the high popularity of specific software appli-
cations and the services offered by ISPs) and can also be an interesting study-case
to test the proposed approach.

Two KPIs were identified to be relevant for VoIP traffic type:

1. One-way end-to-end delay (OED);
2. Mean Opinion Score (MOS).

OED, as the name says, is the unidirectional delay that is encountered from the
sending node to the receiving node. Its value is the sum of every delay contribution
introduced by each network node passed through. An indication of unidirectional
delay values related to the quality of the communication can be found in [8]. In-
ternational Telecommunication Union (ITU) indicates two threshold values: if the
one-way delay is below 150ms, the quality is very good; if the one-way delay is
above 400ms, the quality is very poor.

Based on this indication and on the provided data, in this chapter the following
association between delay threshold values and perceived quality was used:
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• if OED ≤ 150ms, the communication perceived quality is very good;
• if 150ms < OED ≤ 250ms, the communication perceived quality is quite good;
• if 250ms<OED≤ 450ms, the communication perceived quality is medium/poor;
• if OED > 450ms, the communication perceived quality is very poor.

MOS is a score that indicates the quality of a voice communication; it may vary
in a range that goes from the minimum value of 1, that corresponds to a very poor
quality, to the maximum value of 5, that corresponds to a very good quality [9].
It derives historically from the mean score assigned in tests with listeners in deter-
mined conditions. An association among MOS values, voice communication quality
and perceived disturb can be found in Table 1.

Table 1: Association among MOS values, voice communication quality and per-
ceived disturb.

MOS Communication quality Disturb description

5 very good not perceivable
4 good slightly perceivable
3 medium perceivable but not annoying
2 poor annoying
1 very poor very annoying

In this chapter, two models for the MOS estimation were used. The first is de-
scribed in [10] and can be expressed by the following equation:

MOS = 4−0.7 · ln(loss)−0.1 · ln
(

M−hsize
drate

)
,

where “loss” is the packet loss expressed in percentage, “M” is the IP packet di-
mension expressed in bytes, “hsize” is the IP packet header dimension expressed
in bytes, and “drate” is the used codec datarate expressed in kilobytes per second
(kB/s). This model is valid in IP networks, and consider 4 as MOS maximum value.
Other more complex models for MOS estimation can be found in [11], [12].

The second model used for MOS estimation derives from the provided traffic
data and is summarized in Table 2. In this case, differently from the first model
used, jitter is taken into account. A MOS value is assigned to a voice communication
if it respects both the corresponding values imposed for packet loss and jitter (see
Table 2). As an example, if from a determined number of sent packets it is obtained
a packet loss of 2% and a mean jitter of 100ms, a MOS value of 3 is assigned. Note
that with this model only discrete MOS values are assigned, and that a MOS value
of 5 is theoretically possible, even if practically quite impossible to obtain.
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Table 2: Second model used for MOS estimation.

MOS Packet loss (%) Jitter (ms)

5 0 0
4 ≤ 3 ≤ 75
3 ≤ 5 ≤ 125
2 ≤ 10 ≤ 125
1 > 10 > 125

3 Cognitive engine

This chapter proposes the introduction of a module called “cognitive engine”, that
can be implemented and installed in mobile devices. The final goal of the cognitive
engine is to identify and select the wireless network, among the available ones, that
permits to offer the best QoE for the final user. The network selection is based on
KPIs, and for this reason is valid for a specific type of traffic,

Since the decision must be taken considering all the KPIs defined for the selected
traffic type, a rule for the final selection that includes all of them must be defined.
In this chapter, the definition of a cost function is proposed. In particular, a sim-
ple linear combination of KPIs is proposed as cost function. Given an application,
i.e. a traffic type, a wireless network, and related KPI values, the cost is therefore
expressed by the following equation:

c(KPI1, . . . ,KPIN) =
N

∑
i=1

gi KPIi ,

where c is the final cost value of the network, N is the number of KPIs considered
for the actual traffic type, and gi is the gain for the ith KPI.

It must be noted that each KPI presents a different gain g, i.e. has a different
weight on the final decision. The gain values, that is to say how much a KPI is
important for the cost within a specific traffic type, are determined by experimen-
tal data (together with the KPIs definition). However, the system presents a high
flexibility. In fact the gain values can be updated and adjusted thanks to a learning
process in order to refine the final selection based on the device specific behaviour
(its firmware and software implementations, as better explained in Section 2).

Obviously, the goal is to obtain the lowest possible cost. This means that the
selected wireless network is the one that presents the lowest cost. In this way, a
soft decision is taken. However, for specific application or traffic types, it might be
necessary to slightly modify this by introducing a hard decision rule. For example,
in specific cases a KPI can be much more important than the others for QoE, and
this can condition the final network selection.
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4 Model structure

The cognitive engine is designed to be an intermediate layer of the system, con-
sidering an Open Systems Interconnection (OSI) protocol stack model. It is located
right under the application layer, so that it can communicate directly with the ap-
plications that are running in the device. It is also in direct communication with the
operating system (OS) of the device, in order to obtain information about the avail-
able wireless networks and the connection status of the current network in terms of
lower layers parameters (SNR, delay, jitter, throughput, packet loss and every other
parameter eventually necessary for the KPIs computation). This model structure is
shown in Figure 2. Note that the cognitive engine is thought to be used for the wire-
less network selection, so all data not implied in the selection process can skip the
transition through the cognitive engine and can directly pass from application to
presentation layer.

APPLICATION LAYER


LOWER LAYERS:

Presentation


Session

Transport

Network

Data link

Physical


COGNITIVE ENGINE

Application


Selected network
Available networks

Lower layers parameters


Fig. 2: The cognitive engine as intermediate layer and its location in the OSI system
model.

The inputs of the cognitive engine are the following:

• the application that needs a connection (from the application layer);
• the available wireless networks (from the OS);
• lower layer parameters, eventually necessary for the KPIs computation (from the

OS).

The output of the cognitive engine consists in the selected wireless network,
that scores the best values of KPIs relevant for the running application (i.e. for the
relative traffic type).
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The functional behaviour of the cognitive engine can be outlined by the following
logical steps:

• the application received as input is associated to one of the defined traffic types;
• once the traffic type is selected, the corresponding KPIs that need to be used and

evaluated are identified;
• lower layers parameters that are needed for the KPIs evaluation are identified;
• for each available wireless network (whose list is received as input) lower layers

parameters identified in the previous step are obtained:

– from memory (input in the cognitive engine), if a previous measurement step
was carried out;

– by measuring; a “trial” connection is established if needed (this is the case,
for example, of network layer parameters, that cannot be obtained otherwise);

• these parameters are used for KPIs evaluation, based on KPIs definitions and
models; for each network there is, therefore, a set of KPI values;

• based on the KPI values, the cost function is computed for each network;
• the wireless network that presents the lowest cost is selected: it is the output of

the cognitive engine.

Obviously, networks conditions may change: new wireless networks may be
available, others may cease to be available (especially considering that the cognitive
engine is thought to be implemented in mobile devices), and furthermore networks
conditions may vary, so that the resulting KPIs may become significantly differ-
ent from the values previously considered. Given this context, a periodical update
must be performed in order to guarantee the choice of the best network under vari-
able conditions. For this reason, the cognitive engine periodically updates the list
of available networks and corresponding KPIs, by periodically repeating the steps
presented above. This means that measures with the currently selected network are
periodically performed and KPIs values updated; “trial” connections are again es-
tablished for the other networks in order to have also their KPIs to be compared to
the other values and, if convenient, a different network selection can be done. The
frequency of this periodical update must be discussed separately since it involves
many different aspects.

Moreover, the cognitive engine must incorporate a learning mechanism. Since
each different device behaviour may introduce different delays and performance
modifications that can significantly affect QoE [5], one of the cognitive engine task
must be to “learn” from the device behaviour, to adapt to it, and to react as a conse-
quence. To react means to consider the performance of the devices, i.e. to include,
for example, the delay introduced by the specific implementation of the Internet
browser or the VoIP application in the device where the cognitive engine is running.
These behaviours cannot be known a priori, and for this reason a learning step is
required.

Also the different gains for the different KPIs used for the cost function eval-
uation can be updated, adapted and modified. As a drawback, this learning phase
can take some time, but it can be done in background as a “refining” process for
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the network selection. But the big advantage is a very refined selection method that
completely takes into account all the aspects involved in the quality perceived by
the final user.

A final consideration must be done on the so called “ping-pong effect”. After
an update, if the selected network is different from the one selected in a previous
stage, the device OS must connect to the new network in order to perform the best
QoE. However, given the variability of the channels corresponding to the different
networks (and especially if the cost variation is quite low), a same previous network
could be selected in a following update. If the network change was performed, then
at a next stage another change will be necessary, causing continuous and unnec-
essary network choice fluctuations, with the consequence of a waste of resources
in terms of time and energy consumption spent for performing the changes. For
this reason, in order to avoid this “ping-pong effect”, a latency on the decision or a
hysteresis with threshold must be applied before effectively deciding for a network
change. This also means that a series of frequent updates must be performed before
proceeding with a change in the selected network.

5 Experimentation

5.1 Experimental set-up

A first experimentation was carried out considering the VoIP case. The parameters
needed for the computation of OED and MOS (the two KPIs identified for VoIP
traffic type, as presented in Section 2) are therefore the following:

• end-to-end delay;
• packet loss;
• IP packet dimension and its header dimension;
• used codec datarate;
• jitter.

Three of the above parameters (delay, packet loss and jitter) were obtained thanks
to the use of the ping utility; the remaining (packet and header dimensions and
datarate) were set as ping or KPIs inputs.

Packets sent with ping were sent from a computer towards a website server; this
was chosen in order to always guarantee a minimum number of hops passed through
and have therefore a realistic situation where the two end devices are connected
through a certain number of intermediate nodes. In this case, there were always at
least 15 hops from every location where the ping capture was carried out to the
website server. For each capture, 50 packets of 64 bytes (dimension of IP packets)
were sent. The obtained values are the result of the average of the 50 packets sent
(and received back). Captures were taken at different times of the day during 10
days.
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5 different wireless networks were used for the captures: 3 Wi-Fi networks and 2
different connections to the cellular network. These networks are located in different
places in Rome, Italy; in every place, though, the minimum number of hops was
respected. Although they are not present in the same place, they are an example
of different wireless networks that can be effectively found in a same place and
among which the device must choose. (They were chosen in different places due
to captures bonds related to timing and capture device availability). The considered
codec for VoIP communication is G.729 (CS-ACELP, conjugate-structure algebraic-
code-excited linear prediction), that provides a datarate of 8kb/s.

Values of the parameters obtained through these ping captures, together with the
set values, were used to compute the KPIs for VoIP, and the final KPI values were
then stored with the association to the time of the day when the capture was taken. In
this first experimentation, a granularity of 15 minutes was considered, i.e. a capture
was performed every 15 minutes during the central hours of the days.

5.2 Experimental data

OED values obtained are shown in Figure 3. For two of the networks (Wi-Fi network
3 and cellular network 2) data are available only for limited times of the day (be-
tween 14.15 and 15.15). Wi-Fi networks present in general lower delay (OED values
are lower). Moreover cellular networks (in particular cellular network 1) show much
more delay variability.

MOS values obtained are shown in Figure 4 (first model used) and in Figure 5
(second model used). It can be easily seen that the second model presents only
discrete values. For both models the maximum value is limited to 4. It must be
noted that when jitter is considered for MOS evaluation, i.e. in the second model
used, cellular network 1 shows much lower MOS values in moments of the day
when there is more variability in the delay.

In a first implementation of the cognitive engine, used for testing the described
system, memorized data were used in order to select the wireless network that offers
the best QoE for VoIP traffic; all presented networks were therefore thought to be
available in the same place. Collected KPI data were normalized and used for net-
work selection. Gain values chosen are 0.7 for OED and 0.3 for MOS, that is to say
that end-to-end delay is considered to weight 70% on the QoE in a VoIP commu-
nication, and MOS is considered to weight the remaining 30%. These gain values
can be, as explained before, adjusted and updated. Repeating the selection process
at different times of the day gave as a result different networks, according to the
memorized KPI values.

Cognitive engine must update the KPI values of the available networks before
making the selection, in order to have the estimate of the experienced quality the
more realistic as possible. However, having a database with KPI memorized data of
the network that were already “seen” in the past permits to have a first estimate in
case the update process is not possible before the application requires a connection
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Fig. 3: OED values obtained at different times of the day with different wireless
networks.

establishment (for example because there is no time to complete the update process
before the connection starts). This estimate can be “rough” if it is based on few data,
but it is at least a first basis on which the decision can be taken; moreover, as soon
as possible, new values can be collected, data can be updated and the estimate can
be therefore refined.

A consideration should also be done on the initial transitional period. In fact,
when a new network, that was never “seen” before, becomes available, there is no
stored data related to it. Until a new KPI update is performed, in order to have data
also of this network, it is not selected even if it can present performance able to
permit the best experience for the final user. In the period before the new update it
is therefore present a transitory, where the best QoE is not fully guaranteed due to
the lack of data.

6 Conclusions and future work

In this chapter, a cognitive architecture was introduced at the application layer: the
wireless network that can guarantee the best experience to the final user was au-
tomatically selected thanks to the introduction and use of application layer param-
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Fig. 4: MOS values obtained using the first model at different times of the day with
different wireless networks.

eters, i.e. Key Performance Indicators. Quality of Experience was introduced and
KPIs were defined for different traffic types based on experimental data. The model
of a cognitive engine was presented, whose goal is to identify and select, based on
KPIs, the best wireless network among the available ones. An experimentation was
then carried out considering the VoIP case, with OED and MOS as KPIs.

From our knowledge, this is the first case in which application layer parameters
are used in an extensive way, and the first example of cognitive engine with the goal
of achievement the best QoE in a context of heterogeneous wireless networks.

The presented system presents high flexibility, since it can be applied in a general
context, with different wireless technologies and with different types of traffic.

This cognitive engine model, that was tested in the VoIP case, should be tested
with other traffic types, introducing the appropriate KPIs. Future work on this topic
will also focus on the selection algorithm: the convergence time to the best network
must be minimized, by taking into account the “multi-armed bandit problem”, i.e.
how often the measuring (update) step should be performed and when avoiding
wasting resources for the update process. Moreover, the presence of multiple users
should be considered, since it may affect and modify performance of the different
networks.
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Fig. 5: MOS values obtained using the second model at different times of the day
with different wireless networks.
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