14 research outputs found

    Design and implementation of a functional WATM test bed to study the performance of handoff schemes

    Get PDF
    Includes bibliographical references.The focus of this research is on the design and implementation of a WATM functional architecture in order to facilitate a seamless handoff. The project includes an experimental implementation of the WATM network. This required the building of a prototype WATM network with existing ATM switches and implementing handover protocol schemes at both the access and network sides

    A framework for fast handoff schemes in wireless ATM networks

    Get PDF
    Includes bibliographical references.In this research, we focus on providing a framework that extends the fixed ATM standard to support user mobility in future WATM networks. The WATM architecture allows for the migration of fixed ATM networks without major modifications. Thus most of the mobility functions are implemented on the wireless access network. The most important component supporting mobility in a cluster is the Mobility Enhanced Switch (MES). We propose using direct links between adjacent MESs to support Permanent Virtual Channels (PVCs) in order to facilitate fast inter-cluster handoffwith minimum handofflatency. This research addresses a framework on handoff mobility by proposing three fast handoff re-routing schemes based on the support of PVCs

    Protocol Development and Performance Analysis of WIP and WMPLS Wireless Networking Technologies

    Get PDF

    Data Link Control Layer Performance for Wireless ATM Networks

    Get PDF
    The growing demand for ATM-based technology and recent proliferation of wireless access technologies have motivated researchers to examine the feasibility of extending the ATM paradigm from the wireline to the wireless domain and create a new research area known as Wireless ATM (WATM) (Toh, 1997). Dealing with lossy wireless links, characterized by limited bandwidth and high, bursty error rates, breaks the main assumption of conventional ATM systems, which is that of using no errors per links. Therefore, WATM systems must provide a transparent mechanism to ensure reliable end-to-end data transmission over the wireless portion of the network. The identification of a wireless-specific data link control layer (W-DLC), sitting between the traditional ATM layer and a wireless-specific medium access control layer (WMAC), is the responsible entity for guaranteeing the quality of service (QOS) requested by individual ATM-based virtual connections. Thus the main focus is to investigate the performance of DLC protocol for ABR traffic over wireless ATM network. Retransmissions are only required for non-real time traffic and are implemented using a Go-Back-N and Selective Repeat (SR) ARQ (Lin et aI., 1984), (Schwartz, 1987). Wireless channels are usually time-varying and the channel bit error rates vary as the surrounding environment changes. Since these factors put in jeopardy the performance of the DLC protocol and higher layer end-to-end protocol at large, additional link-level mechanisms are added to provide reliability over impaired radio links. The DLC protocol implementation represents an attempt to achieve these goals under the strict constraints imposed by impaired wireless links. This thesis studies and compares the two Automatic Repeat Request (ARQ) protocols, i.e., Go-Back-N (GBN) and Selective Repeat (SR) ARQ and analyse them for variable packet size and fixed packet size (WATM packet) by using C programming for simulation. The results show that the performance of SR ARQ is better than the GBN ARQ for variable packet size. The results also show that SR ARQ protocol has better performance than GBN ARQ in terms of error detection for fixed WATM packet in the range of 50 -70 bytes, which is the WATM packet range (ATM Forum, 1997)

    Design and performance evaluation of Wireless Multi-Protocol Label Switching (WMPLS)

    Get PDF
    Scope and Method of Study: The research presented in this document focuses on the design of a new protocol for high-speed wireless data communications. The primary goal of this new design is to overcome the limitations of its predecessors, while minimizing the needed resources and maximizing throughput and efficiency in its operations. Another important goal of the study is to provide a homogeneous protocol for wired and wireless networks in order to provide complete interoperability for overlay models and other protocols that can be designed on the basis of this work. The performance evaluation part of this document shows the areas in which improvement has been achieved over previous protocol implementations, and it also shows the areas in which further research is needed in order to improve the performance at least to the levels set by previous protocols.Findings and Conclusions: This study shows that a native wireless design and implementation of the Multi-Protocol Label Switching (MPLS) protocol provides improvements in the field of wireless data communications, providing a homogeneous platform for voice and data communication networks. The research is open for further improvements and modifications for services not contemplated in this document, and continuous developments should be conducted in order to obtain a working prototype of this proposal

    Traffic modeling in mobile internet protocol : version 6.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2005.Mobile Internet Protocol Version 6 (lPv6) is the new version of the Internet Protocol (IP) born out of the great success of Internet Protocol version 4 (IPv4). The motivation behind the development of Mobile IPv6 standard stems from user's demand for mobile devices which can connect and move seamlessly across a growing number of connectivity options. It is both suitable for mobility between subnets across homogenous and inhomogeneous media. The protocol allows a mobile node to communicate with other hosts after changing its point of attachment from one subnet to another. The huge address space available meets the requirements for rapid development of internet as the number of mobile nodes increases tremendously with the rapid expansion of the internet. Mobility, security and quality of service (QoS) being integrated in Mobile TPv6 makes it the important foundation stone for building the mobile information society and the future internet. Convergence between current network technologies: the intern et and mobile telephony is taking place, but the internet's IP routing was designed to work with conventional static nodes. Mobile IPv6 is therefore considered to be one of the key technologies for realizing convergence which enables seamless communication between fixed and mobile access networks. For this reason, there is numerous works in location registrations and mobility management, traffic modeling, QoS, routing procedures etc. To meet the increased demand for mobile telecommunications, traffic modeling is an important step towards understanding and solving performance problems in the future wireless IP networks. Understanding the nature of this traffic, identifying its characteristics and developing appropriate traffic models coupled with appropriate mobility management architectures are of great importance to the traffic engineering and performance evaluation of these networks. It is imperative that the mobility management used keeps providing good performance to mobile users and maintain network load due to signaling and packet delivery as low as possible. To reduce this load, Intemet Engineering Task Force (IETF) proposed a regional mobility management. The load is reduced by allowing local migrations to be handled locally transparent from the Home Agent and the Correspondent Node as the mobile nodes roams freely around the network. This dissertation tackles two major aspects. Firstly, we propose the dynamic regional mobility management (DRMM) architecture with the aim to minimize network load while keeping an optimal number of access routers in the region. The mobility management is dynamic based on the movement and population of the mobile nodes around the network. Most traffic models in telecommunication networks have been based on the exponential Poisson processes. This model unfortunately has been proved to be unsuitable for modeling busty IP traffic. Several approaches to model IP traffic using Markovian processes have been developed using the Batch Markovian Alrival Process (BMAP) by characterizing arrivals as batches of sizes of different distributions. The BMAP is constructed by generalizing batch Poisson processes to allow for non-exponential times between arrivals of batches while maintaining an underlying Markovian structure. The second aspect of this dissertation covers the traffic characterization. We give the analysis of an access router as a single server queue with unlimited waiting space under a non pre-emptive priority queuing discipline. We model the arrival process as a superposition of BMAP processes. We characterize the superimposed arrival processes using the BMAP presentation. We derive the queue length and waiting time for this type of queuing system. Performance of this traffic model is evaluated by obtaining numerical results in terms of queue length and waiting time and its distribution for the high and low priority traffic. We finally present a call admission control scheme that supports QoS

    Buffer management and cell switching management in wireless packet communications

    Get PDF
    The buffer management and the cell switching (e.g., packet handoff) management using buffer management scheme are studied in Wireless Packet Communications. First, a throughput improvement method for multi-class services is proposed in Wireless Packet System. Efficient traffic management schemes should be developed to provide seamless access to the wireless network. Specially, it is proposed to regulate the buffer by the Selective- Delay Push-In (SDPI) scheme, which is applicable to scheduling delay-tolerant non-real time traffic and delay-sensitive real time traffic. Simulation results show that the performance observed by real time traffics are improved as compared to existing buffer priority scheme in term of packet loss probability. Second, the performance of the proposed SDPI scheme is analyzed in a single CBR server. The arrival process is derived from the superposition of two types of traffics, each in turn results from the superposition of homogeneous ON-OFF sources that can be approximated by means of a two-state Markov Modulated Poisson Process (MMPP). The buffer mechanism enables the ATM layer to adapt the quality of the cell transfer to the QoS requirements and to improve the utilization of network resources. This is achieved by selective-delaying and pushing-in cells according to the class they belong to. Analytical expressions for various performance parameters and numerical results are obtained. Simulation results in term of cell loss probability conform with our numerical analysis. Finally, a novel cell-switching scheme based on TDMA protocol is proposed to support QoS guarantee for the downlink. The new packets and handoff packets for each type of traffic are defined and a new cutoff prioritization scheme is devised at the buffer of the base station. A procedure to find the optimal thresholds satisfying the QoS requirements is presented. Using the ON-OFF approximation for aggregate traffic, the packet loss probability and the average packet delay are computed. The performance of the proposed scheme is evaluated by simulation and numerical analysis in terms of packet loss probability and average packet delay

    A framework for traffic flow survivability in wireless networks prone to multiple failures and attacks

    Get PDF
    Transmitting packets over a wireless network has always been challenging due to failures that have always occurred as a result of many types of wireless connectivity issues. These failures have caused significant outages, and the delayed discovery and diagnostic testing of these failures have exacerbated their impact on servicing, economic damage, and social elements such as technological trust. There has been research on wireless network failures, but little on multiple failures such as node-node, node-link, and link–link failures. The problem of capacity efficiency and fast recovery from multiple failures has also not received attention. This research develops a capacity efficient evolutionary swarm survivability framework, which encompasses enhanced genetic algorithm (EGA) and ant colony system (ACS) survivability models to swiftly resolve node-node, node-link, and link-link failures for improved service quality. The capacity efficient models were tested on such failures at different locations on both small and large wireless networks. The proposed models were able to generate optimal alternative paths, the bandwidth required for fast rerouting, minimized transmission delay, and ensured the rerouting path fitness and good transmission time for rerouting voice, video and multimedia messages. Increasing multiple link failures reveal that as failure increases, the bandwidth used for rerouting and transmission time also increases. This implies that, failure increases bandwidth usage which leads to transmission delay, which in turn slows down message rerouting. The suggested framework performs better than the popular Dijkstra algorithm, proactive, adaptive and reactive models, in terms of throughput, packet delivery ratio (PDR), speed of transmission, transmission delay and running time. According to the simulation results, the capacity efficient ACS has a PDR of 0.89, the Dijkstra model has a PDR of 0.86, the reactive model has a PDR of 0.83, the proactive model has a PDR of 0.83, and the adaptive model has a PDR of 0.81. Another performance evaluation was performed to compare the proposed model's running time to that of other evaluated routing models. The capacity efficient ACS model has a running time of 169.89ms on average, while the adaptive model has a running time of 1837ms and Dijkstra has a running time of 280.62ms. With these results, capacity efficient ACS outperforms other evaluated routing algorithms in terms of PDR and running time. According to the mean throughput determined to evaluate the performance of the following routing algorithms: capacity efficient EGA has a mean throughput of 621.6, Dijkstra has a mean throughput of 619.3, proactive (DSDV) has a mean throughput of 555.9, and reactive (AODV) has a mean throughput of 501.0. Since Dijkstra is more similar to proposed models in terms of performance, capacity efficient EGA was compared to Dijkstra as follows: Dijkstra has a running time of 3.8908ms and EGA has a running time of 3.6968ms. In terms of running time and mean throughput, the capacity efficient EGA also outperforms the other evaluated routing algorithms. The generated alternative paths from these investigations demonstrate that the proposed framework works well in preventing the problem of data loss in transit and ameliorating congestion issue resulting from multiple failures and server overload which manifests when the process hangs. The optimal solution paths will in turn improve business activities through quality data communications for wireless service providers.School of ComputingPh. D. (Computer Science

    Performance evaluation of a 40 GHz broadband cellular system

    Get PDF
    Doutoramento em Engenharia ElectrónicaO trabalho apresentado nesta tese enquadra-se na área das comunicações móveis celulares e tem subjacente a utilização de um protótipo de um sistema de comunicações móveis de banda larga desenvolvido no âmbito do projecto Europeu SAMBA. Este protótipo apresenta como principais características inovadoras as taxas de transmissão, a frequência de operação, a mobilidade e os protocolos de handover rádio. Inicialmente são descritos aspectos relacionados com a evolução das comunicações móveis ao longo do tempo e apresentados conceitos teóricos fundamentais para compreender o comportamento do canal rádio móvel e os mecanismos de propagação. São identificados os tipos de desvanecimento e descritos os vários parâmetros que permitem caracterizar o canal rádio. A descrição do impacto do desvanecimento e as formas de o mitigar são apresentadas para contextualizar o trabalho desenvolvido em termos da especificação do protótipo e as opções escolhidas. As características globais do protótipo são apresentadas o que inclui a descrição do interface rádio, da arquitectura, dos módulos de RF, dos módulos de processamento de banda base, protocolos e algoritmo de transferência rádio. O protótipo foi avaliado em vários cenários com diferentes características. No cenário exterior foi analisada uma rua urbana típica do tipo canyon. Em termos de configuração do sistema foram consideradas e analisadas várias alturas da Estação Base, anglos de inclinação das antenas, várias velocidades da Terminal Móvel, operação com e sem linha de vista e a penetração do sinal rádio em ruas transversais. No cenário interior foram realizados testes similares e medidas relativas às transferências que só foram executadas para este cenário por questões logísticas. Numa primeira abordagem foi analisada a cobertura oferecida por cada célula e posteriormente activada a funcionalidade de transferência. Foram também efectuados estudos com uma única Estação Base cobrindo toda a área. Em termos de caracterização do canal rádio em banda larga são apresentadas medidas da resposta impulsiva para dois cenários interiores e complementados por outros estudos via simulação utilizando uma ferramenta de ray tracing. Nas medidas foi utilizado um método de medição do canal no domínio da frequência. A relação entre o Espalhamento do Atraso e a Banda de Coerência em diferentes cenários foi analisada em detalhe e feita a verificação em termos da violação do limite teórico de Fleury. Como consequência dos tópicos abordados, esta tese apresenta um estudo abrangente de aspectos relacionados com o comportamento do canal rádio na faixa dos 40 GHz e a análise das opções técnicas do protótipo em termos do seu desempenho no âmbito dos sistemas de comunicações móveis 4G.The work presented in this thesis addresses the area of mobile cellular broadband communications and encompasses the utilization of a prototype developed in the framework of the European project SAMBA. This prototype has as main innovative characteristics the transmission rates, the frequency band of operation, the mobility and the radio handover protocols. Initially are described aspects related with the historical evolution of the mobile communications and presented fundamental theoretical concepts to understand the behaviour of the radio channel and the propagation mechanisms. The different types of fading are identified as well as the various parameters that allow the characterisation of the radio channel. The fading impact and its mitigation techniques are presented to contextualise the work developed in terms of the specification of the features implemented in the prototype and the options available. The global characteristic of the prototype are presented namely the radio interface, the architecture, the RF modules, the baseband modules, protocols and the algorithm for the radio handover. The prototype was evaluated in various scenarios with different characteristics. In the outdoor scenario a canyon type street was analysed. Several heights of the Base Station, antenna tilting angles, Mobile Terminal velocities, operation in line-of-sight and non line-of-sight and the penetration of the signal in a transversal street. In the indoor scenario similar measurements were performed. The handover feature was analysed just for this scenario due to logistic reasons. In a first phase the coverage provided by each Base Station was analysed and subsequently activated the handover functionality. Studies using a single Base Station to cover the whole pavilion were also performed. In terms of broadband analysis, channel impulse response measurements were performed using a frequency domain technique in two scenarios and complemented by others analysed only using a ray tracing simulation tool. The relationship between the radio channel Delay Spread and the Coherence Bandwidth was analysed in different scenarios and the possible violation of the Fleury lower bond checked. As a consequence of the several topics covered in this thesis, a deep study of the aspects related with the behaviour of the radio channel in the 40 GHz band and the performance of the technical options implemented in the prototype is presented in the framework of 4G mobile communication systems
    corecore