17 research outputs found

    A Dynamic Continuation-Passing Style for Dynamic Delimited Continuations (Preliminary Version)

    Get PDF
    We present a new abstract machine that accounts for dynamic delimited continuations. We prove the correctness of this new abstract machine with respect to a definitional abstract machine. Unlike this definitional abstract machine, the new abstract machine is in defunctionalized form, which makes it possible to state the corresponding higher-order evaluator. This evaluator is in continuation+state passing style, and threads a trail of delimited continuations and a meta-continuation. Since this style accounts for dynamic delimited continuations, we refer to it as `dynamic continuation-passing style.' We illustrate that the new machine is more efficient than the definitional one, and we show that the notion of computation induced by the corresponding evaluator takes the form of a monad

    A Simple Proof of a Folklore Theorem about Delimited Control

    Get PDF
    We formalize and prove the folklore theorem that the static delimited-control operators shift and reset can be simulated in terms of the dynamic delimited-control operators control and prompt. The proof is based on a small-step operational semantics that takes the form of an abstract machine

    There and Back Again

    Get PDF
    We present a programming pattern where a recursive function defined over a data structure traverses another data structure at return time. The idea is that the recursive calls get us `there' by traversing the first data structure and the returns get us `back again' while traversing the second data structure. We name this programming pattern of traversing a data structure at call time and another data structure at return time ``There And Back Again'' (TABA). The TABA pattern directly applies to computing symbolic convolutions and to multiplying polynomials. It also blends well with other programming patterns such as dynamic programming and traversing a list at double speed. We illustrate TABA and dynamic programming with Catalan numbers. We illustrate TABA and traversing a list at double speed with palindromes and we obtain a novel solution to this traditional exercise. Finally, through a variety of tree traversals, we show how to apply TABA to other data structures than lists. A TABA-based function written in direct style makes full use of an ALGOL-like control stack and needs no heap allocation. Conversely, in a TABA-based function written in continuation-passing style and recursively defined over a data structure (traversed at call time), the continuation acts as an iterator over a second data structure (traversed at return time). In general, the TABA pattern saves one from accumulating intermediate data structures at call time

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for

    Exploiting Labels in Structural Operational Semantics

    Get PDF
    Structural Operational Semantics (SOS) allows transitions to be labelled. This is fully exploited in SOS descriptions of concurrent systems, but usually not at all in conventional descriptions of sequential programming languages. This paper shows how the use of labels can provide significantly simpler and more modular descriptions of programming languages. However, the full power of labels is obtained only when the set of labels is made into a category, as in the recently-proposed MSOS variant of SOS

    Lazy Evaluation and Delimited Control

    Full text link
    The call-by-need lambda calculus provides an equational framework for reasoning syntactically about lazy evaluation. This paper examines its operational characteristics. By a series of reasoning steps, we systematically unpack the standard-order reduction relation of the calculus and discover a novel abstract machine definition which, like the calculus, goes "under lambdas." We prove that machine evaluation is equivalent to standard-order evaluation. Unlike traditional abstract machines, delimited control plays a significant role in the machine's behavior. In particular, the machine replaces the manipulation of a heap using store-based effects with disciplined management of the evaluation stack using control-based effects. In short, state is replaced with control. To further articulate this observation, we present a simulation of call-by-need in a call-by-value language using delimited control operations

    A Dynamic Continuation-Passing Style for Dynamic Delimited Continuations

    Get PDF
    We present a new abstract machine that accounts for dynamic delimited continuations. We prove the correctness of this new abstract machine with respect to a pre-existing, definitional abstract machine. Unlike this definitional abstract machine, the new abstract machine is in defunctionalized form, which makes it possible to state the corresponding higher-order evaluator. This evaluator is in continuation+state passing style and threads a trail of delimited continuations and a meta-continuation. Since this style accounts for dynamic delimited continuations, we refer to it as `dynamic continuation-passing style.' We show that the new machine operates more efficiently than the definitional one and that the notion of computation induced by the corresponding evaluator takes the form of a monad. We also present new examples and a new simulation of dynamic delimited continuations in terms of static ones

    On the Static and Dynamic Extents of Delimited Continuations

    Get PDF
    We show that breadth-first traversal exploits the difference between the static delimited-control operator shift (alias S) and the dynamic delimited-control operator control (alias F). For the last 15 years, this difference has been repeatedly mentioned in the literature but it has only been illustrated with one-line toy examples. Breadth-first traversal fills this vacuum. We also point out where static delimited continuations naturally give rise to the notion of control stack whereas dynamic delimited continuations can be made to account for a notion of `control queue.'

    Modular Structural Operational Semantics

    Get PDF
    Modular SOS (MSOS) is a variant of conventional Structural Operational Semantics (SOS). Using MSOS, the transition rules for each construct of a programming language can be given incrementally, once and for all, and do not need reformulation when further constructs are added to the language. MSOS thus provides an exceptionally high degree of modularity in language descriptions, removing a shortcoming of the original SOS framework. After sketching the background and reviewing the main features of SOS, the paper explains the crucial differences between SOS and MSOS, and illustrates how MSOS descriptions are written. It also discusses standard notions of semantic equivalence based on MSOS. An appendix shows how the illustrative MSOS rules given in the paper would be formulated in conventional SOS

    Distributed Approximation of Fixed-Points in Trust Structures

    Get PDF
    Recently, Carbone, Nielsen and Sassone introduced the trust-structure framework; a semantic model for trust-management in global-scale distributed systems. The framework is based on the notion of trust structures; a set of ``trust-levels'' ordered by two distinct partial orderings. In the model, a unique global trust-state is defined as the least fixed-point of a collection of local policies assigning trust-levels to the entities of the system. However, the framework is a purely denotational model: it gives precise meaning to the global trust-state of a system, but without specifying a way to compute this abstract mathematical object. This paper complements q the denotational model of trust structures with operational techniques. It is shown how the least fixed-point can be computed using a simple, totally-asynchronous distributed algorithm. Two efficient protocols for approximating the least fixed-point are provided, enabling sound reasoning about the global trust-state without computing the exact fixed-point. Finally, dynamic algorithms are presented for safe reuse of information between computations, in face of dynamic trust-policy updates
    corecore