27,087 research outputs found

    Relativistic MHD and black hole excision: Formulation and initial tests

    Full text link
    A new algorithm for solving the general relativistic MHD equations is described in this paper. We design our scheme to incorporate black hole excision with smooth boundaries, and to simplify solving the combined Einstein and MHD equations with AMR. The fluid equations are solved using a finite difference Convex ENO method. Excision is implemented using overlapping grids. Elliptic and hyperbolic divergence cleaning techniques allow for maximum flexibility in choosing coordinate systems, and we compare both methods for a standard problem. Numerical results of standard test problems are presented in two-dimensional flat space using excision, overlapping grids, and elliptic and hyperbolic divergence cleaning.Comment: 22 pages, 8 figure

    Singular Higher-Order Complete Vector Bases for Finite Methods

    Get PDF
    This paper presents new singular curl- and divergence- conforming vector bases that incorporate the edge conditions. Singular bases complete to arbitrarily high order are described in a unified and consistent manner for curved triangular and quadrilateral elements. The higher order basis functions are obtained as the product of lowest order functions and Silvester-Lagrange interpolatory polynomials with specially arranged arrays of interpolation points. The completeness properties are discussed and these bases are proved to be fully compatible with the standard, high-order regular vector bases used in adjacent elements. The curl (divergence) conforming singular bases guarantee tangential (normal) continuity along the edges of the elements allowing for the discontinuity of normal (tangential) components, adequate modeling of the curl (divergence), and removal of spurious modes (solutions). These singular high-order bases should provide more accurate and efficient numerical solutions of both surface integral and differential problems. Sample numerical results confirm the faster convergence of these bases on wedge problems

    How fast do radial basis function interpolants of analytic functions converge?

    Get PDF
    The question in the title is answered using tools of potential theory. Convergence and divergence rates of interpolants of analytic functions on the unit interval are analyzed. The starting point is a complex variable contour integral formula for the remainder in RBF interpolation. We study a generalized Runge phenomenon and explore how the location of centers and affects convergence. Special attention is given to Gaussian and inverse quadratic radial functions, but some of the results can be extended to other smooth basis functions. Among other things, we prove that, under mild conditions, inverse quadratic RBF interpolants of functions that are analytic inside the strip Im(z)<(1/2ϵ)|Im(z)| < (1/2\epsilon), where ϵ\epsilon is the shape parameter, converge exponentially

    Convergence of linear barycentric rational interpolation for analytic functions

    Get PDF
    Polynomial interpolation to analytic functions can be very accurate, depending on the distribution of the interpolation nodes. However, in equispaced nodes and the like, besides being badly conditioned, these interpolants fail to converge even in exact arithmetic in some cases. Linear barycentric rational interpolation with the weights presented by Floater and Hormann can be viewed as blended polynomial interpolation and often yields better approximation in such cases. This has been proven for differentiable functions and indicated in several experiments for analytic functions. So far, these rational interpolants have been used mainly with a constant parameter usually denoted by d, the degree of the blended polynomials, which leads to small condition numbers but to merely algebraic convergence. With the help of logarithmic potential theory we derive asymptotic convergence results for analytic functions when this parameter varies with the number of nodes. Moreover, we present suggestions on how to choose d in order to observe fast and stable convergence, even in equispaced nodes where stable geometric convergence is provably impossible. We demonstrate our results with several numerical examples

    Mesh update techniques for free-surface flow solvers using spectral element method

    Get PDF
    This paper presents a novel mesh-update technique for unsteady free-surface Newtonian flows using spectral element method and relying on the arbitrary Lagrangian--Eulerian kinematic description for moving the grid. Selected results showing compatibility of this mesh-update technique with spectral element method are given

    Singular Higher Order Divergence-Conforming Bases of Additive Kind and Moments Method Applications to 3D Sharp-Wedge Structures

    Get PDF
    We present new subsectional, singular divergence conforming vector bases that incorporate the edge conditions for conducting wedges. The bases are of additive kind because obtained by incrementing the regular polynomial vector bases with other subsectional basis sets that model the singular behavior of the unknown vector field in the wedge neighborhood. Singular bases of this kind, complete to arbitrarily high order, are described in a unified and consistent manner for curved quadrilateral and triangular elements. The higher order basis functions are obtained as the product of lowest order functions and Silvester-Lagrange interpolatory polynomials with specially arranged arrays of interpolation points. The completeness properties are discussed and these bases are proved to be fully compatible with the standard, high-order regular vector bases used in adjacent elements. Our singular bases guarantee normal continuity along the edges of the elements allowing for the discontinuity of tangential components, adequate modelling of the divergence, and removal of spurious solutions. These singular high-order bases provide more accurate and efficient numerical solutions of surface integral problems. Several test-case problems are considered in the paper, thereby obtaining highly accurate numerical results for the current and charge density induced on 3D sharp-wedge structures. The results are compared with other solutions when available and confirm the faster convergence of these bases on wedge problem
    corecore