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Abstract—This paper presents new singular curl- and diver-
gence-conforming vector bases that incorporate the edge con-
ditions. Singular bases complete to arbitrarily high order are
described in a unified and consistent manner for curved trian-
gular and quadrilateral elements. The higher order basis func-
tions are obtained as the product of lowest order functions and
Silvester–Lagrange interpolatory polynomials with specially ar-
ranged arrays of interpolation points. The completeness properties
are discussed and these bases are proved to be fully compatible
with the standard, high-order regular vector bases used in adja-
cent elements. The curl (divergence) conforming singular bases
guarantee tangential (normal) continuity along the edges of the
elements allowing for the discontinuity of normal (tangential)
components, adequate modeling of the curl (divergence), and
removal of spurious modes (solutions). These singular high-order
bases should provide more accurate and efficient numerical solu-
tions of both surface integral and differential problems. Sample
numerical results confirm the faster convergence of these bases
on wedge problems.

Index Terms—Electromagnetic analysis, electromagnetic
scattering, finite element methods (FEMs), Galerkin method,
high-order modeling, method of moments (MoM), numerical
analysis, singular vector functions incorporating edge conditions,
wedges.

I. INTRODUCTION

NUMERICAL methods using subsectional high-order
vector bases are nowadays able to deal with very com-

plex electromagnetic structures. The finite element method
(FEM) can be used to discretize partial differential models of
isotropic or anisotropic inhomogeneous media, and use of high
order vector expansion functions of the curl-conforming kind
suppresses nonphysical spurious modes from the numerical
solution [1]–[3]. Similarly, the method of moments (MoM) can
be applied to discretize integral equation models of metallic
structures by using high-order vector functions of the diver-
gence-conforming kind (see for example [1]).

Numberless structures of practical engineering interest con-
tain conducting or penetrable edges and, in the vicinity of these
edges, the surface charge [4]–[6] and the field behavior can be
singular [6]–[9]. Unfortunately, though the singular behavior of
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the electromagnetic field or current can be quantitatively appre-
ciated only at the edge extreme, one needs to use more expen-
sive, very dense meshes in the neighborhood of the edges in
order to model the fields, even though high-order vector bases
are in use.

In general, it is not granted that iterative mesh refinement
could provide good effective solutions to these problems,
whereas iterative mesh refinement involves complex proce-
dures and codes, uses additional unknowns and it usually results
in an increase of the computational time and/or memory re-
quirements. The literature shows that iterative mesh-refinement
is widely used in the FEM context (see, for example, [10]),
whereas it can hardly be considered by MoM practitioners
since MoM matrices are not sparse and one would have to
recompute too many matrix coefficients for any new refined
mesh. Incidentally, in this connection, we notice that in the
neighborhood of an edge the commonly used testing techniques
are questionable, and use of different weight functions could
improve the convergence of the numerical results [11], [12].

The best alternative to heavy mesh refinement or to using
very dense meshes is the introduction of singular functions
able to precisely model the singular edge behavior of fields
and currents. As far as the FEM treatment of edge singularities
is concerned, important contributions to the development of
scalar and vector expansion functions incorporating the singular
behavior are provided in [13]–[20], whereas the continuous
interest in incorporating edge conditions in MoM solutions dates
back to the mid seventies of last century [21], with more recent
contributions available in [22]–[24]. This topic has obviously
been considered by other finite methods, and the interested
reader can for example refer to [25]–[30]. Entire-domain basis
functions modeling of edge singularities has been addressed
in [31], [32], for example, though this seems to have less
general applicability.

This paper presents new curl- and divergence-conforming
singular, high-order vector bases on curved two-dimensional
(2-D) domains. The bases are directly defined in the parent
domain without introducing any intermediate reference frame,
differently to what has been done by other authors [13], [18],
[19]. Our bases incorporate the edge conditions and are able
to approximate the unknown fields in the neighborhood of the
edge of a wedge for any order of the singularity coefficient ,
that is supposed given and known a priori. The wedge can be
penetrable in the curl-conforming case, while it is supposed
impenetrable (metallic) in the divergence conforming case.

To introduce the material that follows it is of importance to
first recognize that the geometrical and material discontinuity
introduced by a wedge yields to a 2-D problem, since in the
near-edge region any edge can be considered as straight [6].
One has then to separately consider the models to deal with
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the singularity of the current from those used to deal with the
singularity of the electromagnetic fields. Discretization of the
current is required by the MoM solution of surface integral
equations; conversely, discretization of the electric or of
the magnetic field is required by FEM approaches and, in
the vicinity of an edge, this discretization involves a volumetric
region.

To clarify the problem let us consider for a moment the fields
at angular frequency in the neighborhood of a straight metal
wedge of aperture angle immersed in free space, with electric
permittivity and magnetic permeability equal to and , re-
spectively. By introducing a polar reference frame ( , , ) with
origin at the edge of the wedge and with the axis parallel to the
edge itself, the surface current and the electromagnetic field
in the vicinity of the edge assume, when expanded in series [6],
[7], the following form (only the first terms are reported):

(1)

(2)

(3)

where and are appropriate coefficients. The constant
component in the radial part of the surface current, when
present, does not pose any numerical modeling problem. This
constant component vanishes for a zero-thickness metal edge
and, as indicated, it has opposite sign on the two sides of the
wedge since no charge accumulates at the edge. Equations
(2) and (3) hold for the transverse magnetic (TM) and for
the transverse electric (TE) part, respectively. For a perfectly
conducting wedge of aperture angle one has .
The smallest value of occurs for a half-infinite plane

. Only the current component parallel to the metal edge
and the transverse components of the electromagnetic fields
can become infinite at the edge. The longitudinal magnetic field

could have a constant component, whereas both and
have a component that at the edge vanishes as . Although
the singularity coefficient depends on the geometry and
on the wedge material properties, the previous expressions
can be generalized to represent fields in the neighborhood
of a wedge made of different penetrable or not-penetrable
materials, provided the azimuthal dependence factors in (2)
and (3) are adequately modified [6], [8]. Then, in general, the
curl of the transverse fields contains a constant component
since the curls of and are related to the longitudinal
component and , respectively. The singularity coefficient
of isotropic penetrable wedges is always greater than 1/2 [6].
The singularity coefficient is usually evaluated for the static
case [8]. The singularity coefficient is frequency independent,
and the coefficient of the dynamic case can be proven to be
equal to the static case one [33].

The paper starts by defining singular lowest order vector
bases, and by listing the four general requirements they have
to fulfill. Section III then describes the element representation
to derive singular curl-conforming bases on triangular and
quadrilateral domains, with derivation of the high-order static
potentials that permit one to systematically derive the static

singular components of these bases. The new curl-conforming
bases and their associated longitudinal bases are described in
Section IV, whereas Section V reports the new divergence-con-
forming bases. Numerical FEM results to illustrate the benefits
of using such new bases are reported in Section VI. Part of the
material reported here was presented in [34]–[36].

II. SINGULAR, LOWEST ORDER COMPLETE VECTOR BASES

A thorough investigation of the previous literature has shown
that the fundamental question to be raised before deriving
singular vector bases regards the number of basis functions
required to define the lowest order bases. For example, the
six basis functions given in [18], or the eight basis functions
introduced in [19], define singular triangular elements com-
patible to first order curl-conforming elements adjacent to the
element edge opposite to the singular vertex. Those bases are
not of the lowest order since zeroth-order regular elements
cannot be made adjacent to singular ones. As a matter of fact,
for triangular curl-conforming elements, the lowest number
of functions required to achieve completeness and singular
conformity to adjacent first-order elements is proved in Sec-
tion IV-A to be equal to eleven ( , order), whereas
six vector functions are at least necessary for completeness and
singular conformity to adjacent zeroth-order elements (order

).
We investigated several ways to derive singular and complete

lowest order vector bases. We define singular bases to be lowest
order complete when the following properties are fulfilled:

1) the basis set is complete just to the regular zeroth order,
and for curl (or divergence) conforming bases the curl (di-
vergence) of the bases is also complete to regular zeroth
order;

2) the singular element is fully compatible to adjacent ze-
roth-order regular elements attached to its nonsingular
edges, and to adjacent singular elements of the same order
attached to the other edges;

3) the basis functions can model the static, singular be-
havior of the transverse electromagnetic fields (curl-con-
forming case), or of the surface current and charge density
(divergence-conforming case), in the neighborhood of
the wedge (first term of Meixner’s series [7]), being
the radial distance from the wedge sharp-edge profile;

4) the curl-conforming bases are able to model a nonsingular
transverse field with curl that vanishes at the edge of the
wedge as , whereas the divergence-conforming bases
can model the radial component of the current density that
vanishes as at the wedge sharp-edge ( and not
integer).

The second requirement is necessary to remove spurious numer-
ical solutions. The first requirement has been introduced not to
limit the size of the mesh in the neighborhood of the edge of the
wedge. Above all, it permits one to deal with all cases where
the singularity of the fields is not excited. To satisfy the first re-
quirement the lowest order set must contain all the zeroth-order
regular basis functions. Notice that by removing this require-
ment one can obtain singular interpolatory bases that exactly
reduce to the standard (regular) bases in the limit for singularity
coefficient (see [38]).
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Our lowest order bases are used to built higher order sin-
gular vector bases with a simple procedure. All our singular
high-order bases contain the regular (polynomial) bases as one
subset; hereafter these subsets are reported in interpolatory
form, although they could also take hierarchical form. The
other remaining (Meixner) subset of the complete bases could
be constructed independently in hierarchical, interpolatory,
or in other forms. This latter subset, named after Meixner
because it models just the Meixner series, contains the singular
terms as well as other nonsingular irrational algebraic (that is
nonpolynomial) terms. The Meixner subset can be regarded as
the irrational algebraic part of the complete bases.

In spite of the fact that the subset of the regular functions
could have interpolatory form [1], the third and first require-
ment together prevent singular complete bases of interpolatory
form to be constructed even at the lowest order. In fact, the reg-
ular and the Meixner subsets altogether cannot be interpolatory
since they are used to represent on the same element both reg-
ular as well as irrational algebraic vector functions. One of the
major results of this paper is that our new singular bases do not
interfere with the interpolatory nature of the conventional bases
eventually used on the regular elements attached to the singular
ones.

In this connection, we observe that there is no reason to
represent a singular behavior in terms of interpolation functions
since the singular behavior is local in nature and proper only
in the neighborhood of the edge of the wedge, with singularity
coefficient that depends on integral properties of the solution,
that is on energy considerations. The singularity coefficient
must be known a priori. In all the problems where singular
fields are not excited one numerically finds that the expansion
coefficient associated with each singular expansion function
is zero.

III. ELEMENT REPRESENTATION AND SHARP-EDGE

POTENTIALS FOR CURL-FREE SINGULAR FIELDS

A local numbering scheme is used for parent variables, edges,
height and edge vectors, and vertices of 2-D elements [1]. The
edges of each triangular element are numbered counter-clock-
wise from 1–3, and the parent variable (with )
varies linearly across the element and vanishes on the th edge,
with on the vertex opposite to edge [1]. For this reason,
the vertices of the triangle could be given the same local-order
number already associated with their opposite edge. In the fol-
lowing, for all the elements attached to the sharp-edge vertex,
we refer to these local numbers in terms of dummy indexes. In
particular, with reference to Fig. 1, we locate on the sharp-edge
vertex the th vertex of each triangular sharp-edge element. The
dummy index can be equal to 1, 2 or 3 and index arithmetic
is performed modulo three (that is when ). For
each triangular sharp-edge element, the two edges depart
from the sharp-edge vertex, while the th edge is opposite to the
sharp-edge vertex.

Similarly, for quadrilaterals, the edges are numbered counter-
clockwise from 1–4 and the parent coordinate (with 1, 2,
3, 4) varies linearly across the element and vanishes on the th
edge, attaining a value of unity at the edge opposite to the

Fig. 1. Cross-sectional view of the region around a sharp, but curved edge
of aperture angle � meshed with curved curl-conforming elements. The
sharp-edge elements are those attached to the sharp-edge vertex and the figure
shows a case with five sharp-edge elements. The edges of each element are
locally numbered counter-clockwise from 1–3 for triangles, and from 1–4 for
quadrilateral elements. For each sharp-edge element it is convenient to refer to
these local numbers in terms of the dummy indexes i� 1, i, i+ 1, i+ 2, with
index arithmetic performed modulo three for triangles (i+1 = 1 if i = 3) and
modulo four for quadrilaterals.

coordinate line [1]. In this case index arithmetic is performed
modulo four. For quadrilateral sharp-edge elements, edge and

are those departing from the sharp-edge vertex.
Fig. 1 shows that the local number for the side common to

two attached triangles is for one element and for
the attached element. The local number for the common side of
two attached quadrilaterals is for one element and for
the other. If a quadrilateral element is attached to a triangular
one, either the th side of the quadrilateral is in common to side

of the triangle, or side of the quadrilateral is in
common to side of the triangle. Two sharp-edge vectors
oriented in the direction leaving from the sharp-edge vertex bind
each sharp-edge element at the wedge. We distinguish these two
vectors with the local-index number of the associated edge to
indicate with the sharp-edge vector tangent to the th edge
of a sharp-edge element. In terms of the usual edge-vector
[1] one has for triangular elements, whereas for
quadrilaterals one gets and .

Singular curl-conforming vector functions were derived in
[18] and [19] by using the Stern–Becker transformation [13] to
map a parent unit square into the triangular object-element at-
tached to the sharp-edge. A local polar coordinate system
was used to define these elements, with the radial variable
equal to zero on the sharp-edge vertex. A careful study of the
Stern–Becker transformation proves that singular bases are not
required to model singular fields in the pseudo-azimuthal direc-
tion parallel to , along the edges attached to the sharp-edge
vertex. Along these edges, singular bases are rather required to
model the correct singular behavior of the field in the direction
parallel to the edge considered. The capability of modeling sin-
gular field components parallel to the pseudo-azimuthal direc-
tion must not be required for the same reason that one has
to allow for discontinuous normal components along the edges
of regular (i.e., non singular) elements. The singular azimuthal
behavior of the field will be better approximated when resorting
to higher order singular vector functions, in a way similar to
what happens when higher order regular bases are used to get
more accurate results also for field components normal to the
element edges [37].
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Although the Stern–Becker transformation [13] has been
used to derive singular vector functions on triangular elements,
we prefer a different approach since this transformation needs
to be revised when dealing with quadrilateral elements. This
transformation remains of importance to construct quadrature
formulas able to deal with singular vector functions.

A. Lowest Order Sharp-Edge Potentials

To model the transverse field in the neighborhood of a
sharp-edge we derive irrotational singular basis functions as the
gradient of scalar potential functions that vanish for
and that are identically equal to zero on all the element edges,
except for the one attached to the sharp-edge. This guarantees
that the gradient of each potential is exactly normal to the
element edges where . The potentials are constructed so
to guarantee the correct singular tangent component of their
gradient along the edge where was not set to zero. At the
lowest order, two sharp-edge potential functions are defined for
each sharp-edge element. The triangular sharp-edge potentials
are

(4)

whereas, the sharp-edge potentials of quadrilaterals are

(5)

(6)

with .
Along their associated edge , the potentials defined

above simplify to

(7)

with

for potentials (4)
for potentials (5)
for potentials (6).

(8)

The dummy variable introduced in (7) is linear in one parent
variable and independent on the others. Along edge , varies
linearly from zero to unity with on the vertex opposite to
the sharp-edge vertex, and with vanishing at the sharp-edge
vertex reached at for potentials (4), for potentials
(5) and for potentials (6).

Sharp-edge potentials readily permits one to define a con-
tinuous edge-based potential function that spans two sin-
gular elements having in common the edge labeled with global
index . For example, with reference to Fig. 1, the local index
for the edge common to two attached triangles is for
the first element and for the second element. In this
case the edge-based potential function associated with the
common edge is defined as on the first element and as

on the second element, with given as in (7) on the
common edge and on the other edges. Along their as-
sociated edge, the gradient of the potentials (4)–(6) exhibits the
correct singularity of Meixner theory at the sharp-edge vertex
[7]. These potentials can be readily used to construct singular
vector functions with a continuous tangent component along the

element edges attached to the sharp-edge vertex. In fact, in gen-
eral, one has:

(9)

where is the sharp-edge vector relative to the th global edge.
Potentials (4)–(6) are given in terms of parent coordinates

for both triangular and quadrilateral elements. Their expression
does not involve complex coordinate transformations. Higher
order, continuous tangential, irrotational wedge-fields can
be easily obtained from these results with a general simple
procedure.

B. Sharp-Edge Potential Bases of Order

We now construct higher order sharp-edge potentials by
forming the product of the lowest order potentials with
complete polynomial factors of order . Although the set of
polynomial factors may take different forms (and hierarchical
forms are also possible), we prefer to work with the set formed
by the Silvester interpolation polynomials, as already done
in [1]. This choice seems to be the most convenient because:
a) the Silvester interpolation polynomials do not interpolate the
sharp-edge vertex or the other element vertices; b) we routinely
use the same polynomial factors to construct higher order
vector bases on all the remaining regular (i.e., nonsingular)
elements [1].

Triangular Potentials: The interpolation polynomial factors
that interest sharp-edge triangular elements are reported in
Table I according to the element representation used here,
although these factors are the same defined in [1]. In Table I,

indicates the interpolation Silvester polynomial of
order whereas indicates the shifted interpolation
Silvester polynomial of order (see [1]). The subscripts
and are used likewise to indicate polynomials of the variable

and , respectively.
Triangular sharp-edge potential bases of order are defined

by

(10)

with given in (4) and reported in Table I.
Dependency in the basis set (10) exists for since one
has . This dependency is easily
eliminated by discarding from this set all the functions
for and , or all the functions
for and . The number of independent
functions in set (10) is .

Continuity of the th order sharp-edge potentials across the
edge in common to adjacent elements naturally comes out
from (7) and from use of interpolation polynomials. The basis
set (10) is in fact able to produce, along the edges attached
to the sharp-edge vertex, a representation th order complete
with respect to as a weighting factor. These bases
are necessary to represent scalar (longitudinal) fields that, at
the sharp-edge vertex, vanish as times a polynomial factor
of order . In numerical applications, we use set (10) together
with the regular polynomial set normally used to represent the
unknown longitudinal field component on triangular elements.
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TABLE I
SILVESTER-LAGRANGE INTERPOLATING POLYNOMIALS FOR qTH ORDER ELEMENT CONFORMITY [1]

The gradient of the higher order potentials has a vanishing
tangent component along the edges of the sharp-edge triangle
with the following exceptions, valid for ( , ,

) and ( , , ):

(11)

with

(12)

and defined in the first of (8). The previous result generalizes
(9) to higher order.

Quadrilateral Potentials: Table I reports the interpolation
polynomial factors for quadrilateral elements. Quadrilateral
sharp-edge potential bases of order are defined by the
following independent functions

(13)

with . Once again, continuity of the th order sharp-edge
potentials across the edge in common to adjacent elements nat-
urally comes out from (7) and from use of interpolation polyno-
mials.

The gradients of (13) have vanishing tangent component
along the edges of the sharp-edge quadrilateral with the
following exceptions, valid for ( , , ) and
( , , ):

(14)

with given in (12) and defined in (8). Equation (14)
generalizes (9) to arbitrarily higher order. Since the expressions

on the right-hand side of (11) and (14) are equals, the tangential
continuity of the gradient of higher order sharp-edge potentials
across element boundaries is automatically ensured.

IV. CURL CONFORMING FUNCTIONS

To fulfill the third requirement given in Section II one has
to include in the basis set singular, curl-free vector functions
derived as the gradient of the scalar potential functions
reported in Section III-A. The gradient of each potential is
exactly normal to the element edges where . Along the
remaining edge where , the potential has been constructed
so to guarantee the correct singular tangent component of the
related vector function.

The last requirement of Section II leads one to include in the
basis set vector functions having curl that vanishes at the edge
of the wedge as [18]. These functions ought to be edgeless,
that is to say with a zero-tangent component along all the edges
of the element, for two reasons: a) they are primarily required
to model the curl of the field solution rather than the field itself;
b) they must not spoil element compatibility. Being edgeless,
these functions are element-based by nature and they do not
pose any problem of conformity to adjacent elements.

In the following, we use the same notation of [1] and indicate
with the edge-based, regular curl-conforming functions. Con-
versely, sharp-edge basis functions are always identified by the
presence of a superscript on the left-hand side of their symbol.
The symbol is overturned for edgeless functions. For example,

indicates an edge-based singular vector function with zero
curl, while is used to indicate an edgeless function having
curl that at the sharp-edge vertex vanishes as .

A. Singular Curl-Conforming Bases on Triangles

Lowest Order Singular Bases: The lowest order singular
triangular bases reported in Table II contain the regular ze-
roth-order bases already discussed in [1].

The two curl-free functions vanish at and
are the gradient of the scalar potentials (4), also vanishing at
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TABLE II
LOWEST-ORDER CURL-CONFORMING BASES

. These functions are associated with only one edge of
the triangular element (edge ), since their tangent
component along the remaining two element edges is zero.

inherited the subscript from the regular function
that appears in its expression, although this function is el-

ement-based because of its vanishing tangent component along
each of the three element edges. The factor has been
introduced in the expression of so to set this function to
zero at , as it already happens for the functions .
In numerical applications, for almost equal to unity, the factor

could be omitted to rescale the expansion coefficients
to convenient values. In this connection, we recall that there is
no need to normalize in order to guarantee conformity
to adjacent elements, since is edgeless.

Completeness of Lowest Order Bases: Our bases consider
only the first term of Meixner’s expansion that holds in the
neighborhood of the edge of the wedge for the transverse field
and its curl. In fact:

1) on the th edge, for , the tangent component
equals , with [see (8)

and (9)].
2) the following linear combinations of our basis functions

are able to represent a singular curl-free vector parallel to
the basis vector , and the correct vanishing of the curl
at the sharp-edge vertex, that may occur only if :

(15)

(16)

For these reasons, as far as singular fields are concerned, the
order of our basis set is . However, the basis set is complete
to the regular zeroth-order because its regular subset is
complete to order zero [1]. That is to say, the basis set can model
regular fields of order . From now on, the order of singular
bases is given by a couple of integer indexes; with this
notation, the order of the bases of Table II is .

Conformity of the Singular Bases of Order : Our basis
functions are conforming to adjacent zeroth-order regular ele-
ments attached to the th edge of the singular element, since in
our bases only the regular function has a tangent compo-
nent on this edge (a constant tangent component [1]). As far as
the two remaining edges are concerned, conformity to
adjacent elements is ensured in the usual way since the tangent
component of our basis functions along their associated edge is
either constant ( functions) or singular ( functions),
with the singular tangent components taking the general form
given in (9). Hence, to ensure tangential continuity across ele-
ment boundaries, one has only to fix the sign of these functions
in accordance to the reference convention given by the orienta-
tion of the sharp-edge vectors .

Order Bases: Curl-conforming functions of higher
order are formed by the product of the lowest order bases with
complete Silvester interpolation polynomial factors. In order to
obtain bases with a regular curl, the higher order static functions
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associated with the static functions are obtained by
taking the gradient of the higher order scalar potentials (10).
Higher order bases ( and ) are the union of the
following two sets:

(17)

(18)

defined in terms of the Silvester–Lagrange interpolation poly-
nomials of order and given in Table I. Notice that
by discarding set (17) one gets the regular th order bases given
in [1]. To get lower matrix condition numbers, it is convenient
in numerical applications to normalize set (18) as explained in
[1] and set (17) by multiplying each function of this latter set
times the magnitude of the edge vector . The last term on
the right-hand side in the expressions of is required
to regularize the curl. After regularization of the curl,
turn out to be static, curl-free functions.

Dependency Relations at Interior Nodes and Element Con-
formity: For , the functions are dependent. In
fact, one has the following dependency relationship:

(19)

This dependency is easily eliminated by discarding all the func-
tions for and , or all the
functions for ; . Similarly,
as shown in [1], one has to eliminate the dependency of the reg-
ular -functions, again by discarding all the functions
for ; , or all the functions
for ; . This simple result is of great
importance since the rule used to guarantee bases independency
is the same already discussed in [1].

The bases are compatible with regular th order elements
along the edge opposite to the singularity. The tangential conti-
nuity of the field along the two remaining edges of the triangular
element is easily ensured by fixing the sign of the basis functions
in accordance to the reference convention given by the orienta-
tion of the sharp-edge vectors [see also (11), (12), and (14)].

In the neighborhood of the sharp-edge vertex one has
and , for . It
is then straightforward to prove that in the neighborhood of the
sharp-edge vertex, for , the singular edge-behaviors are
complete to order with respect to as a weighting
factor.

Number of Degrees of Freedom (DOF): The total number of
DOF for th order regular curl-conforming bases on a triangle
is [1]. For singular bases of order , this figure
has to grow as follows:

• one singular component (associated with )
DOFs two edges edge DOF;

• one singular component (associated either with or
with ) DOFs one face
triangle interior DOF;

• one edgeless component (associated with )
DOFs one face triangle

interior DOF;
for a total of DOF per sharp-edge
triangle.

B. Singular Curl-Conforming Bases on Quadrilaterals

With reference to Fig. 1, we assume the sharp-edge vertex
located at the vertex in common to the quadrilateral edges and

.
Singular Bases of Order : The eight vector functions

reported at bottom of Table II are able to correctly model the
edge-field singularity on curved quadrilateral elements and de-
fine the lowest order singular bases.

The four regular zeroth-order functions have already
been discussed in [1]. The remaining four functions model
the edge singularity and vanish for , when singular
fields are not supported. The two static (curl-free) functions

, are the gradient of the scalar potentials (5) and
(6) and are associated with edge and , respectively; along
the remaining three element edges they have a zero tangent
component.

The functions inherited the subscript from the reg-
ular function ( , ) appearing in their expres-
sion, although these functions are element-based because they
have vanishing tangent component along each of the four ele-
ment edges. In numerical applications and for almost equal to
unity, the factor introduced to set at
could be omitted to rescale the expansion coefficients to conve-
nient values.

Completeness and Conformity of -Order Bases: Our
bases are complete to the regular zeroth-order because the
regular subset is complete to order zero [1]. That is
to say, the bases can model regular fields of order .
Furthermore, the order of singularity of our bases is since
they are able to consider only the first term of the Meixner
expansion that holds in the neighborhood of the edge of the
wedge for the transverse field and its curl. In fact:

1) the correct vanishing of the curl at the sharp-edge vertex
that may occur only for is modeled by linear com-
binations of our basis functions as it follows:

(20)

2) the tangent component is equal to
with and on edge and , respec-
tively. Our static functions are fully compatible with the
singular vector functions of a triangular element attached
to the quadrilateral element at issue. The conformity of
the regular subset then yields to the complete conformity
of our bases to adjacent elements having order .

Order Bases: We construct higher order curl-con-
forming functions by applying the same technique used for
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the singular triangular bases, with the necessary modifications
(see [1]) required to deal with quadrilateral elements. The

-order bases are obtained by the union of the normalized
regular set of order given in [1] with the following Meixner set
of singularity order ( and integer), shown in (21) at the
bottom of the page, defined in terms of the Silvester–Lagrange
interpolation polynomials given in Table I.

Dependency Relations at Interior Nodes and Element Con-
formity: The functions of the Meixner subset (21) are linearly
independent for all value of . On the contrary, dependency in
the regular subset exist for . To eliminate this dependency
one has to discard some regular basis functions exactly as ex-
plained in [1].

After recalling (11), (12), and (14), we observe once again
that the tangential continuity along the side in common to two
adjacent elements is simply ensured by fixing the sign of the
basis functions in accordance to some arbitrarily chosen refer-
ence convention on the common edge.

Number of DOF: On a quadrilateral, the total number
of DOFs for th order regular curl-conforming bases is

[1]. For singular bases of order , this
figure has to grow as follows:

• one singular component (associated with , ,
) DOFs two edges edge DOF;

• two singular components (associated with , ,
) DOFs one face quadrilateral

interior DOF;
• two edgeless components (associated with , ,

) DOFs one face quadrilateral
interior DOF;

for a total of DOF per sharp-edge
quadrilateral.

C. Longitudinal Bases of Order for 2-D Singular
Curl-Conforming Elements

Two-dimensional FEM applications require to represent the
longitudinal component of the unknown field in terms of scalar
bases that are given shortly by using Silvester–Lagrange inter-
polation polynomials. The longitudinal bases of order are
constructed as the union of two sets. The first set is formed by
the sharp-edge potential bases of order given in (10) and (13)
for triangular and quadrilateral elements, respectively. These
functions are needed to model longitudinal fields that vanish at
the sharp-edge vertex as times a polynomial factor of order
, with given in (8). The second longitudinal set is defined

by the regular independent interpolation functions usually em-
ployed in FEM applications [39]. Continuity of the longitudinal
component across the edge in common to adjacent elements nat-
urally comes out from use of interpolation polynomials.

Fig. 2. (a) Local edge-numbering scheme used for edge singularity
quadrilaterals and edge (eee) and vertex (vvv) singularity triangles. Notice that the
element edges i � 1 always depart from the edge profile. (b) Although two
edge singularity triangles can have an edge in common, the basis functions
cannot model a corner singularity.

As said, triangular elements require to use also the following
independent polynomial interpolation functions

of order

(22)

with and where the ranges on the indexes ,
, are . The total number of longitudinal DOF per

sharp-edge triangle of order is then equal to
.

Conversely, the second longitudinal set to be used on quadri-
lateral elements is given by the following independent
polynomial interpolation functions of order

(23)

with and where the ranges on the
indexes , , and are . Thus, the total number of
longitudinal DOF per sharp-edge quadrilateral of order is

.

V. DIVERGENCE CONFORMING FUNCTIONS

Singular divergence conforming functions are useful to
model the surface current distribution on impenetrable wedges.
The wedge faces in the neighborhood of the edge profile should
be meshed by using edge singularity quadrilaterals and/or two
types of singularity triangles: the edge and the vertex
singularity triangle, with local edge numbering schemes shown
in Fig. 2. One has no interest in considering vertex singularity
quadrilaterals since the only element-filler required to mesh in
the neighborhood of the edge profile is the vertex singularity
triangle.

The local edge-numbering scheme sketched in Fig. 2 has
been chosen so to associate the labels to the element
edges departing from the edge profile. As already done when
dealing with sharp-edge potentials, it is convenient to introduce
a dummy variable that varies linearly from zero to unity

(21)
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TABLE III
LOWEST-ORDER DIVERGENCE-CONFORMING BASES

along these edges, with on the edge profile and
on the vertex opposite to the edge profile. With reference

to Fig. 2, one has

for vertex singularity triangles
for edge singularity elements.

(24)

Being an element-filler, the vertex singularity triangle is ob-
tained mainly by considering the first two requirements given
in Section II, whereas the main duty of the edge singularity
elements is to fulfill the last two requirements. In fact, as we
will see shortly, irrespective of whether one considers the edge
singularity triangle or quadrilateral, the divergence-free current
component parallel to the edge profile (i.e., parallel to the th
edges) is modeled by the following linear combination of lowest
order edge-singularity basis functions

(25)

whereas, the correct singular behavior of the charge density at
is modeled by the divergence of the combinations

(26)

A. Singular Divergence-Conforming Bases on Triangles

Low-order triangular bases incorporating the singular be-
havior of the current density near the edge of a wedge have been
derived in [24] by integrating the basis function divergence,
with the correct behavior of the charge density enforced in the
divergence expression. The procedure used in [24] naturally
yields functions of nonadditive kind (nonsubstitutive kind),
in the sense that these functions reduce to the standard (reg-
ular) zeroth-order basis functions in the limit for singularity
coefficient . Our singular bases are different from those
given in [24], although we use the same local edge-numbering
scheme and we derived them by using the same procedure
explained in [24].

Singular Bases of Order : The lowest order bases re-
ported in Table III contain the regular divergence-conforming
bases of order already discussed in [1] and reported at the
top of the Table. For the edge singularity triangle, the -order
bases are obtained by the union of the regular set with the three
edge singular functions of Table III. Similarly, for the vertex
singularity triangle, the basis function set of order is the
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union of the regular set with the three vertex singular functions
of Table III.

Each basis function of the edge and of the vertex singular
set vanishes at . The divergence of , model the
singular distribution of the charge density that comes under the
condition of zero total charge over the singular triangular ele-
ment. The functions and are therefore element-based
and have a vanishing normal component along each of the three
element sides. To reflect the edgeless property, the symbol used
to represent and has been obtained by overturning .
The subscript still appears in these symbols merely because

is given in terms of , whereas can be formally
obtained from by replacing with (defined in
Table III).

The singular functions that remain are associated only with
the edge quoted in their subscript, since the normal component
along the other two element edges is zero. Along side , for

, the normal components of these functions can be
written as

(27)

where (defined in [1]) is the unit outward normal to the el-
ement, is the magnitude of the edge-vector , and ,

for and , respectively (see (24)).
Recall that along the edge profile shown in Fig. 2. Fur-
thermore, one gets

(28)

(29)

with given in Table III. One may observe that the functions
and belong to the same family by noticing that

on the two sides , that is exactly
the same result of (28).

The results (28) and (29), show that the edge singularity tri-
angle functions can model the normal component of the edge
current density that vanishes at the edge as . These bases
are also able to model the singular behavior of the current and
charge density at the th edge of an edge singularity triangle. In
fact, the singular behavior of the divergence-free current compo-
nent parallel to the th edge (i.e., parallel to ) is modeled by the
linear combination (25), whereas the correct singular behavior
of the charge density at is modeled by the divergence of
the combinations (26).

Owing to (27) and because of the element conformity of
the regular subset one immediately recognizes, with reference
to Fig. 2, that normal continuity across element boundaries is
simply enforced by adjusting the sign of the basis functions to
correspond to an arbitrarily selected reference direction across
adjacent elements.

Order Bases: The -order bases are obtained by the
union of the normalized regular vector set of order given in [1]
with a Meixner set of order . The Meixner set is either vertex or
edge singular, depending on the type of the singularity triangle
one considers. These sets are obtained by forming the product
of the vertex and edge singular functions given in Table III with

the complete Silvester interpolation polynomial factors reported
in Table I. They can be succinctly written as

(30)

where the superscript is either equal to or according to the
type of the singularity triangle at issue. The normal continuity
across element boundaries is enforced by adjusting the sign of
the basis functions to correspond to an arbitrarily selected refer-
ence direction across adjacent elements. The number of DOFs
for the regular set is [1]. Conversely, all the

basis functions given in (30) are independent be-
cause the lowest order singular functions are not constrained by
any dependency relation. Therefore, the total number of DOFs
per singular triangle is .

B. Singular Divergence-Conforming Bases on Quadrilaterals

Singular Bases of Order : Fig. 2(a) shows the local
edge numbering scheme used for edge singularity quadrilat-
erals. The -order quadrilateral bases of Table III are the
union of the four regular divergence-conforming bases of order

already discussed in [1] with the three edge singular
functions reported at bottom of Table III.

Each basis function of the edge singular set vanishes at .
The element-based function has a vanishing normal com-
ponent along each of the four element sides and its divergence
models the singular distribution of the charge density that comes
under the condition of zero total charge over the singular ele-
ment. inherited the subscript from the regular func-
tion that appears in its expression. This function models
the normal component of the edge current density that vanishes
at the edge as , since one has

(31)

The singular functions are associated only with the
edge quoted in their subscript, since the normal component
along the other three element edges is zero. Along side , for

, the normal components of these functions can be
written as

(32)

with [see (24)]. The singular behavior of the diver-
gence-free current component parallel to the th edge (i.e., par-
allel to ) is modeled by the linear combination (25), whereas
the correct singular behavior of the charge density at is
modeled by the divergence of the combinations (26).

Owing to (27) and (32), and because of the element confor-
mity of the regular subsets one immediately recognizes, with
reference to Fig. 2(a), that normal continuity across element
boundaries is simply enforced by adjusting the sign of the basis
functions to correspond to an arbitrarily selected reference di-
rection across adjacent elements.

Order Bases: The -order bases are obtained by the
union of the normalized regular vector set of order given in
[1] with a Meixner set of order . This latter set is obtained
by forming the product of the edge singular functions given in
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Table III with the complete Silvester interpolation polynomial
factors reported in Table I

(33)

As explained in [1], the dependency in the regular subset for
is easily eliminated by discarding some regular basis

functions. Similarly, the dependency of the singular edge func-
tions for is eliminated by discarding all the functions

for ; , or all the
functions for ; .
Hence, the total number of DOFs per singular quadrilateral is

.

VI. NUMERICAL RESULTS

The benefits of using higher order singular vector bases
are illustrated in short by showing FE results for cylindrical
homogeneous waveguides. The problem is formulated in terms
of the electric field as in [37]. The Galerkin form of the FEM
is used to reduce the transverse vector Helmholtz problem
into a generalized eigenvalue problem solved by use of an
iterative method [37]. Our C++ object-oriented code computes
the modal longitudinal wavenumbers at a given frequency
as well as the modal fields. A symbolic representation of the
singular FEM integrals is implemented to integrate the singular
functions by adding up analytic integral results. This technique
is highly effective and does not require complex programming
to provide integral results to machine precision. Numerical
Gauss–Kronrod integration [40] of the singular functions based
on the Stern–Becker mapping of the triangular element into a
rectangular element yields slightly less accurate results.

We first consider the circular vaned waveguide already
studied in [19], that is a circular homogeneous waveguide
of radius with a zero-thickness radial vane extending to its
center. The normalized waveguide dimension is , where

is the free-space wavenumber. The zeroes of the Bessel
functions of half-integer order, and of the derivatives
of these Bessel functions yield the TM and TE eigenvalues,
respectively [41], [42]. The first subscript labeling these modes
is ; the second subscript indicates the order of the zero, as
usual. Even values of correspond to modes supported also
by a circular waveguide, although the vane suppresses all the

circular waveguide modes. The modal fields exhibiting
a singularity at the edge of the vane are those of the

and the modes, and the singular mode is
dominant. A mode is defined to be singular when its eigenfield
exhibits singular behavior. The numerically obtained transverse
electric field topographies of the first two singular modes are
reported in Fig. 3. Fig. 4 reports the percentage error in the
computed square values of the longitudinal wavenumbers
versus the number of unknowns. In Fig. 4(a) the error is aver-
aged over the first twenty modes, which involve four singular
modes. Fig. 4(b) shows the error averaged over the first four
singular modes. These results have been obtained by using five
different meshes, with meshes from A to D shown in the inset
of Fig. 4(a). Mesh E (not shown) consists of only six curved
triangular elements having as a common vertex the sharp-edge

Fig. 3. Transverse electric field component of the first two singular modes
supported by the circular vaned waveguide. The field associated with the
dominant TE mode is reported at left. The electric field associated with the
singular TM mode (fifth mode) is reported at right.

vertex. Notice that all the used meshes have six triangular
elements attached to the sharp-edge vertex. As a matter of fact,
Fig. 4 shows the effects obtained by trying bases of different
singular -order only on these six sharp-edge elements. For
these meshes, the number of DOFs always increases by 16
when one switches regular elements to singular order
elements; by 34 when passing from to , and by
86 when passing from to . The relatively small
increase in the number of DOFs associated with the use of
singular elements is highly rewarded by the numerical result
improvements. In fact the regular element results of Fig. 4,
although obtained by using fifth-order elements, are always
worse than the results provided by using singular elements.

Fig. 5 shows the normalized matrix fill-in time versus the
number of extra DOFs required to study the problems of Fig. 4
with singular elements and for . These results show that
the technique used to integrate the singular functions has usually
no-impact on the cpu-time required to fill-in the FEM matrices,
unless singular elements are a good percentage of all elements.

Singular elements provides a noticeable improvement also
in the regular mode results, since any lack of precision in the
stiffness matrix coefficients yields to errors on all modes. For
example, Fig. 6 reports the A-mesh percentage error in the
computed square value of the longitudinal wavenumber for
each of the first twenty modes of the circular vaned waveguide.
By comparison with the results obtained when using elements
of ( , ) order one may notice that use of regular

elements yields to higher errors in the singular ( ,
) as well as in the nonsingular mode results.

The second problem we consider is a circular waveguide of
radius with two radial vanes of thickness equal to facing
each other along a diameter. The vane separation gap is cen-
tered and its width is again . The singularity coefficient for
this case is . Although analytical results for this wave-
guide are not available, we studied it to show the ability of our
singular bases to handle cases where sharp-edge elements of a
given wedge are bordered by sharp-edge elements of a different
wedge, and also to prove the effectiveness of singular elements
in dealing with thick layers.

We discretized the waveguide cross-section with 374 trian-
gular elements and got four sharp-edge elements for each vane-
wedge, for a total of 16 sharp-edge elements in the gap region.
The mesh is quite dense in the gap region and rather coarse out of
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Fig. 4. Percentage errors for the first modes of the circular vaned waveguide at k a = 11. (a) Average error on the first twenty modes and (b) average error on
the first four singular modes.

Fig. 5. Matrix fill-in time versus the number of the extra DOFs required to
study with singular elements and for p = 3 the circular vaned waveguide
problems of Fig. 4. The times are normalized with respect to the cpu-time t

spent by our sparse-solver in filling-in the D-mesh FEM matrices by using only
regular elements of order p = 3. Our object-oriented code yields t = 65:6
seconds on a Pentium IV Xeon@2.4 GHz machine. The number of extra DOFs
is zero for the regular p = 3 cases that correspond to 3741, 2369, 1309, 561
DOFs for mesh D, C, B and A, respectively. For all the used meshes, the number
of extra DOFs is 16, 50, and 102 for s = 0, 1 and 2, respectively.

Fig. 6. Percentage error in the computed square value of the longitudinal
wavenumber (k ) for each of the first twenty modes of the circular vaned
waveguide at k a = 11. The modes expressly labeled in the figure exhibit
a singular field at the edge of the vane. Mode 7 and 8 have the same cutoff
frequency since they correspond to the TM and the TE modes of the
circular waveguide.

it. The results reported have been obtained by setting ,
with (regular elements, 5419 unknowns) and with ,

(5459 unknowns). We estimated the errors by considering
as reference results those obtained by setting on the same mesh

, (9733 unknowns).
Fig. 7 shows in the near-gap region both the used mesh and

the numerically obtained transverse electric field topographies
of the first two modes supported by this waveguide. Notice that
out of 16 sharp-edge elements four have a side in common with a
sharp-edge element of a different wedge, while eight more have
a vertex in common with a sharp-edge element of a different
wedge. The second mode of this waveguide is the dominant

mode of the circular waveguide almost in every respect,
with a distorted field topography only in the gap region. Con-
versely, all the energy of the dominant mode of the double-vaned
waveguide is concentrated in the gap region so that it turns out
that the dominant mode is quasi-TEM.

The percentage error in the computed square value of the
longitudinal wavenumber for each of the first ten modes of the
circular double-vaned waveguide is reported in Fig. 8 in natural
as well as in logarithmic scale. As said, the errors have been
computed by choosing as a reference the values obtained by
running the code with , . Once again, one notices that
regular bases yield higher errors than singular bases. In this case,
40 extra DOFs are required to switch from regular to singular
bases of zero -order.

VII. CONCLUSION

This paper presents singular curl- and divergence-con-
forming vector bases that incorporate the edge conditions and
should provide more accurate and efficient numerical solutions
of both surface integral and differential problems. Functions of
arbitrarily high order are described in a unified and consistent
manner for curved triangular and quadrilateral elements.
Properties of the vector basis functions are discussed and these
functions are proved to be fully compatible with the standard,
high-order regular vector functions used in adjacent elements.
Sample numerical results confirm the faster convergence of our
singular higher order bases on wedge problems.
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Fig. 7. Transverse electric field component in the near-gap region of the first two modes supported by the circular double-vaned waveguide of radius a. The field
of the dominant singular mode is reported at left. The field associated with the second mode is given at right.

Fig. 8. Percentage error in the computed square value of the longitudinal
wavenumber (k ) for each of the first ten modes of the circular double-vaned
waveguide at k a = 11. Errors are reported in natural scale at top and in
logarithmic scale at bottom. In this case, only 40 extra DOFs are required to
switch regular (p = 2) elements to (s = 0) singular order elements. The
(p = 2) regular case corresponds to 5419 DOFs.

It is hoped that the unified notation developed herein will fa-
cilitate the use of these functions in numerical electromagnetics
computer codes.
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