11,400 research outputs found

    On the diagram of 132-avoiding permutations

    Get PDF
    The diagram of a 132-avoiding permutation can easily be characterized: it is simply the diagram of a partition. Based on this fact, we present a new bijection between 132-avoiding and 321-avoiding permutations. We will show that this bijection translates the correspondences between these permutations and Dyck paths given by Krattenthaler and by Billey-Jockusch-Stanley, respectively, to each other. Moreover, the diagram approach yields simple proofs for some enumerative results concerning forbidden patterns in 132-avoiding permutations.Comment: 20 pages; additional reference is adde

    Geometry of Pipe Dream Complexes

    Get PDF
    In this dissertation we study the geometry of pipe dream complexes with the goal of gaining a deeper understanding of Schubert polynomials. Given a pipe dream complex PD(w) for w a permutation in the symmetric group, we show its boundary is Whitney stratified by the set of all pipe dream complexes PD(v) where v \u3e w in the strong Bruhat order. For permutations w in the symmetric group on n elements, we introduce the pipe dream complex poset P(n). The dual of this graded poset naturally corresponds to the poset of strata associated to the Whitney stratification of the boundary of the pipe dream complex of the identity element. We examine pipe dream complexes in the case a permutation is a product of commuting adjacent transpositions. Finally, we consider pattern avoidance results. For 132-avoiding permutations, the Rothe diagram forms a Young diagram. In the case a permutation w has exactly one 132-pattern, the associated pipe dream complex is an m-dimensional simplex, where m = n choose 2 − l(w) − 1 and l(w) is the length of w. In the case of exactly two 132 patterns, there are three possible configurations. We include generalizations of these cases

    Classification of bijections between 321- and 132-avoiding permutations

    Get PDF
    It is well-known, and was first established by Knuth in 1969, that the number of 321-avoiding permutations is equal to that of 132-avoiding permutations. In the literature one can find many subsequent bijective proofs of this fact. It turns out that some of the published bijections can easily be obtained from others. In this paper we describe all bijections we were able to find in the literature and show how they are related to each other via ``trivial'' bijections. We classify the bijections according to statistics preserved (from a fixed, but large, set of statistics), obtaining substantial extensions of known results. Thus, we give a comprehensive survey and a systematic analysis of these bijections. We also give a recursive description of the algorithmic bijection given by Richards in 1988 (combined with a bijection by Knuth from 1969). This bijection is equivalent to the celebrated bijection of Simion and Schmidt (1985), as well as to the bijection given by Krattenthaler in 2001, and it respects 11 statistics--the largest number of statistics any of the bijections respects

    Harmonic numbers, Catalan's triangle and mesh patterns

    Full text link
    The notion of a mesh pattern was introduced recently, but it has already proved to be a useful tool for description purposes related to sets of permutations. In this paper we study eight mesh patterns of small lengths. In particular, we link avoidance of one of the patterns to the harmonic numbers, while for three other patterns we show their distributions on 132-avoiding permutations are given by the Catalan triangle. Also, we show that two specific mesh patterns are Wilf-equivalent. As a byproduct of our studies, we define a new set of sequences counted by the Catalan numbers and provide a relation on the Catalan triangle that seems to be new

    Structure of the Loday-Ronco Hopf algebra of trees

    Get PDF
    Loday and Ronco defined an interesting Hopf algebra structure on the linear span of the set of planar binary trees. They showed that the inclusion of the Hopf algebra of non-commutative symmetric functions in the Malvenuto-Reutenauer Hopf algebra of permutations factors through their Hopf algebra of trees, and these maps correspond to natural maps from the weak order on the symmetric group to the Tamari order on planar binary trees to the boolean algebra. We further study the structure of this Hopf algebra of trees using a new basis for it. We describe the product, coproduct, and antipode in terms of this basis and use these results to elucidate its Hopf-algebraic structure. We also obtain a transparent proof of its isomorphism with the non-commutative Connes-Kreimer Hopf algebra of Foissy, and show that this algebra is related to non-commutative symmetric functions as the (commutative) Connes-Kreimer Hopf algebra is related to symmetric functions.Comment: 32 pages, many .eps pictures in color. Minor revision

    A self-dual poset on objects counted by the Catalan numbers and a type-B analogue

    Get PDF
    We introduce two partially ordered sets, PnAP^A_n and PnBP^B_n, of the same cardinalities as the type-A and type-B noncrossing partition lattices. The ground sets of PnAP^A_n and PnBP^B_n are subsets of the symmetric and the hyperoctahedral groups, consisting of permutations which avoid certain patterns. The order relation is given by (strict) containment of the descent sets. In each case, by means of an explicit order-preserving bijection, we show that the poset of restricted permutations is an extension of the refinement order on noncrossing partitions. Several structural properties of these permutation posets follow, including self-duality and the strong Sperner property. We also discuss posets QnAQ^A_n and QnBQ^B_n similarly associated with noncrossing partitions, defined by means of the excedence sets of suitable pattern-avoiding subsets of the symmetric and hyperoctahedral groups.Comment: 15 pages, 2 figure
    • …
    corecore