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Abstract

The dagram of a 132-avoiding permutation can easily be characterized: it is simply the diagram
of a partition. Based on this fact, we present a ngection between 132-avding and 321awiding
permutations. We will show that this bijection translates the correspondences between these
permutations and Dyck paths given by Krattenthaler and by Billey—Jockusch—Stanley, respectively,
to each other. Moreover, the diagram approachdgedimple proofs for some enumerative results
concerning forbidden patterns in 132-avoiding permutations.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Let S, denote the symmetric group ¢y . . ., n}. Givena permtiationst = 71 -- -7 €
Sh and a permutatiom = 11 --- v € Sk, We saythatz contains the pattern if there is
a s@uence 1< iy < iz < --- < ik < nsuch that the elemenis, i, - - - j, are in the
same relative order agtz - - - x. Otherwiser avoids the patterrr, or dternatively,
is t-avoiding For any fhite set{r, ..., s}, we write Sp(1, ..., ts) to denote the set of
permutations ir5, which avoid each of the patterns, . . ., s.

It is an often quoted fact thatS,(r)| is equal to thenth Catalan numbeC, =
ﬁ(znn) for each patterr € S3. Because of obvious symmetry arguments, from an
enumerative viewpoint there are only two distinct cases to consider{123 321} and
7 € {132 213 231, 312. Seveal authors established bijections between permutations
awiding a pattern of each of these classe< fitst one was given by Simion and Schmidt
[18]; West described in 19] a construction using trees; and recently, Krattenthal€} [
connected 123-avoiding and 132-avoiding permutations via Dyck paths.

In Section 2 we present a simpl bijedion betweenS,(321) and Sp(132) basing
on another interesting combinatorial object, the diagrams. Our correspondence has the
E-mail addressreifegerst@math.uni-hannover.de (A. Reifegerste).
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advantage that the excedances of a permutatia {821 are precisely the descents of
its image inSp(132).

An excedance ofr is an integer € {1, ..., n—1} suchthatz; > i. Here theslementr;
is called arexcedance letter forr. Givena permuationsr, we denote the set of excedances
of = by E(;r) and the numbelE ()| by exc(r). Anintegen € {1, ..., n — 1} for which
i > w41 is called adescent ofr. If i is a descent, we say that,; is adescent bottom
for 7. The set of dscents ofr is denoted byD(x), its cardinality is denoted bgles (),
as usual.

There are several one-to-one correspondences between restricted permutations and
lattice paths, in particular, Dyck paths. Byck pathis a pah in the (x, y)-plane from
the origin to(2n, 0) with stepg 1, 1] (called up-steps) and, —1] (called down-steps) that
never falls below thex-axis.

For 321-avoiding permutatins, such a bijection was given by Billey et al];[for
132-avoiding permutations, Krattenthaleoposed a correspondence to Dyck path4 6.
In Section 3 we will show that the Dyck pth obtained for anyr € Sp(321) by the first
mentioned correspondence coincides with fyck path associating by Krattenthaler’s
correspondence with the image (with respect to our bijection)S,(132) of x.

Moreover, it will turn out that the diagram of a 132-avoiding permutation is closed
related to the corresponding Dyck path.

In Section 4 the diagram approach will be used to obtain some enumerative results
concerning the restriction of 132-avoidingrpautations by additional patterns. These
results are already known (se€E]) but we will give bijective proofs for them.

The paper ends with a note on how to obtain the number of occurrences of the pattern
132 in an arbitrary perntation via the diagram.

2. A bijection between 132-avoiding and 321-avoiding per mutations

LetVn={(A1,...,An-1) :0< A1 <Apn2=<---<Ax1<n—-21A <n-—iforalli}
be the set of partitions whose Young diagram fits in the shape 1,n — 2,...,1).
(We will identify a partition with its Young diagram and vice versa.) I§][respectively
[17], we have already described a bijection betw@gnand a class of pattern-avoiding
permutations, namelys,(321). For 132-avoiding permutations, a simple one-to-one
correspondence to partitions with rested diagram can be given, as well.

The key object in our derivation is thildagram of a permutation(For an introduction
see [L1, Chapter 1].) Given a permutatiom € S, we obtain its diagranD (r) as follows.
Let be represented by anx n-array with a dot in each of the squaigsr;). (The other
cells are white.) Shadow all squares due south or due east of some dot and the dotted cell
itself. The diagranD (i) is defined as the region left umsded after this procedure.

Recovering a permutation from its diagras trivial: row by row, put a dot in the
leftmost shaded square such thairhis exactly one dot in each column.

Example2.1. Thediagramoftr =428369 751 1& S;pcontains the white squares of
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By the construction, each of the connected componeni3(af) is a Young diagram.
Their corners are defined to be the elements oéfisential se€ (;r) of the pemutaion .
In [9], Fulton introduced this set which together with a rank function was used as a tool for
algebraic treatment of Schubert polynomials. Th Eriksson and Linusson characterized
the essential sets that can arise from arbitrary permutations, as well as those coming from
certain classes of permutations.

It is very easy to characterize the diagrams of 132-avoiding permutations.

Theorem 2.2. Letr € S, be a permutation not equal to the identity. Thens 132
avoiding if and only if its diagram consists of only one component@ntl) € D(x).

Proof. If there are indices < | < k suchthatnj < nx < 7, then he squard j, i)
belongs toD (r), but itis not connected witlil, 1):

Clearly, the existence of suchsguare is also sufficient for containing the pattern 132.

Note that the squaré€l, 1) must be an element oD(xr) for any 132-avoiding
permutationz # id, otherwise we would have; = 1 andhencer; = i for all
i=1...,n. O

Thus the diagranD () of a permtationz € S,(132) is the graphical representation
of a partition. By constructionD(rr) is just the diagram of an element f: the gjuare
@, j(i)) belongs toD(rr) if and only if no indexk < i satisfiestx < j. Thus we have
ji) <n-—i.

In [17, Remark 3.6], a simple one-to-one correspondence bet@g@21) and), was
given. It is characteristic for 321-avoiding permutations that the subwords consisting of
the excedance letters and the non-excedance letiespgctively, are increasing. Therefore
such a permutation is uniquely determinky its excedances andkeedance letters.
Consequently, the map which takese S,(321) with excedances, .. ., ie to the Young
diagram with corneréix, n + 1 —mj, ), fork =1, ..., g, is bijective.
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Conposing both bijections, that one fro8,(321) to Y, and thatone from)), to
Sn(132), yields abijection between 321-avoiding and 132-avoiding permutations which
is denoted by® in the following.

Example 2.3. For thepermutationt = 147 2 3856 10 9 € S510(321) we have
E(r) = {2,3,6,9}. Hence it corresponds to the 132-avoiding permutation having the
diagram

thatis,@(r) =8954672310 k S10(132.

Itis an essatial property of® that it respects classical permutation statistics.

As observed by Fulton ing], every row of a permutation diagram containing a white
corner (that is, an element of the essential set) corresponds to a descent. Thus we have
des(@(r)) = exc(r) forall m € Sp(321). But there $ more to it han that: the excedance
set ofr and the descent set @f(;r) have not only the same number of elements; the sets
are even identical.

Proposition 2.4. WehaveE(rr) = D(&(r)) for all m € S (32)).

Proof. Any excedance of = corresponds to a corndi,n + 1 — ;) of D(®(x)).
Obviously, by constructingb() from its diagram we obtain a descent éfr) at the
postioni. O

Remarks2.5. (a) As mentioned above, every 321-avoiding permutation is completely
determined by its excedances amdedance letters. Olijection shows that it is sufficient

for fixing a 132-avoiding permutation to know the descents, the descent bottoms, and the
first letter. Leti; < --- < ie be the excedances af € 5,(321), and leto = &(rr). Then

we have

o1=Nn+2-m, Oig+l = N+ 2 —mj, 4, Ojgt1 =1

wherek =1, ...,e— 1. Itis clear from the construction that these elements are precisely
the left-to-rght minima ofo . (A left-to-right minimunof a permtationo is an element;
which is smaller than all elements to its left, i.@.,< o for everyj < i.) Based a this,
we can determinéhe permutatio since it avoids 132.

For example, letr =1472 3856 109 € S10(321) again. (The underlined positions
are just the excedances of) As described above, we obtain the left-to-right minima of
& () and their positions

8x54% x 2% %1,
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and hence, by putting the remaining elemeats= 3,6,7,9, 10 on the first possible
postion following a — 1, the pemutaion ¢(x) =89546723101.

(b) In [17, Comllary 3.7], we prove that the number of excedances is Narayana
distribuedoverS, (321). Using the correspondence betwe®1321) and)y, this fact can
be derived from a result given i8] concerning the distributioof Dyck paths according to
thenumber of valleys. Therefore, there g} («14) Permutations i, havingk descents
and avoiding the pattern 132.

3. Correspondencesto Dyck paths

Both for 321-avoiding and for 132-avoiding permutations, one-to-one correspondences
to lattice paths were given by several authors. 1n . 361], Billey, Jockusch, and
Stanley established a bijectiofig 3 s between 321-avoiding permutations @h ..., n}
and Dyck paths of lengthr2 Recently in [LO, Sedion 2], Krattenthaler exhibited a Dyck
path correspondenceyk for 132-avoiding permutations. Our bijecti@htranslates these
constructions into each other.

Theorem 3.1. Letm € Sh(321). Thenve have¥gigr) = Pk (P()).

Proof. Let # € Sh(321) have the excedanceés < --- < ig, and letc = &(x). The
bijection ¥g jsconstructs the Dyck path correspondingrtas follows:

(1) Letay = 7, —1fork =1,...,eandag = 0, a1 = n. Furthemore, lethy = ix
fork=1,...,eandbg =0, ber1 =n.
(2) Generate the Dyck path (starting at the origin) by adjoiging ax—1 up-steps and
bk — bx—1 down-steps, fok =1,...,e+ 1.
As shown in the preceding section, the elements
CL:=o01=Nn+2—m,
Ck+13=0ik+1=n+2—7fik+1 fork=1,...,e—1,
Cetl :=0jg41 =1
are the left-to-right minima of. With the conventiorco = n + 1 we haveck—1 — ¢k =
ax — a1 forallk = 1,...,e+ 1. For the numbedk of the positions between the
kth and (incuding) the(k + 1)st left-to-right minimum we obtairdy = by — byx_1 for
k=1,...,e+ 1. (Letn + 1 be the postion of the imaginary(e + 2)nd minimum, so
dey1 =N —be.)
Hence the translation o' 3sby ¢ constructs the Dyck path correspondingstos
Sn(132) as follows:

(1) Letcy > - -+ > Ceyq be the left-to-right minima of . Furthemore, letdx be one plus
the number of the letters i betweercy andcgy1, fork = 1, ..., e+ 1. Initialize
co=n+1.

(2) Generate the Dyck path (starting at the origin) by adjoirting — cx up-steps and
dx down-steps, fok =1, ...,e+ 1.

But this is precisely the description @fx proposed in10. O
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Example3.2. Letr = 147 23856 10 9¢ S510(32), and letec = &(x) =
8954672310 1. Bey—Jockusch—Stanley’s bijection takego the Dyck path

which is exactly the path corresponding éoby Krattenthal€s bijection.

It is obvious that the Dyck patl#k (;r) and the diagram of a 132-avoiding permutation
7 are closely related to each other. Given a permutatian S, (132), its diagramD ()
is just the region bordered by the lines between the lattice poiyt3) and (n, n) and
between(n, n) and(2n, 0), respectively, and the patl¥k (r). (Thenorthwest-to-southeast
diagonals correspond to the diagram columns.)

Example3.3. Formr =895467 2 3 10 Xk S10(132 we obtain:

Remarks3.4. (a) In [8, p. 7], Fulmek gave argphical construction of Krattenthaler's
bijection in terms of permutation graphs. RRit2-avoiding permutations, he pictures the
construction as follows. Represemt € S,(312 as ann x n-array with adot in the
square(n + 1 — 7, i). Consider all squares which lie below and to the right of some dot
representing a left-to-right maximum, that is, of some dot having no dots to its northwest.
(A left-to-right maximunis an element which exceeds alktdements to its left.) Define
the path to be the upper boundary of the union of these squares. This yiglds)
whereo is the permutation obtained from by replacingr; with n 4+ 1 — 7j. (Notethat
o € 8n(132)

(b) In [3], BrandEn et al. studied the numbey of increasing subsequences of length
k + 1 in 132-avoiding permutations. By means of Krattenthaler’s correspondence, the
statisticsex were translated into Dyck pacharacteristics. In particular, the sum of heights
in ¥k (;r) equalseyg(r) + 2e1(r) wherenr € Sn(132). (Here theheight w; of theith
path steps defined to be the ordinate of the stagtpoint.) This fact becomes immediately
clear from the relation between the patitaliagram. For any permutationdii, the guare
number of its diagram is equal to the number of its inversions (k@[ 9). Consequently,
we havew; + - - - + won = N2 — 2inv(x) for all = € Sy (132).

(c) In the same paper, ehdigribution of right-to-left maxima oveiS,(132 was
determined. (An element is calledight-to-left maximunif it is larger than all elements
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to its right.) Therefore, thnumber of permutations i, (132) with k such maxina equals
theballot number

k 2n—k
—1,n—-Kk)= .
b(n—1,n -l 2n—k( n )

For their bijective proof, the authors of3] used that¥k translates any right-to-left
maximum ofr € Sp(132) into a return of the associated Dyck path.r@urn of a Dyck
path is a down-step landing on theaxis.) The number of returns of Dyck paths is known
to have a distribution given by(n — 1, n — k); see p].

By the construction offg 35 a retun, except the last (down-) step, appears if and only
if i is an excedance of € Sy(321) with i =i + 1. The very last step o¥gjg) is a
return by definition. Thub(n — 1, n — k) counts the number of 321-avoiding permutations
7 havingk — 1 elementsrj =1 + 1.

Furthemore, there arb(n — 1, n — k) Young diagrams fitting iin — 1, n — 2, ..., 1)
with k — 1 corners in the diagon@l+ j = n. Theconditioni + j = n for a corner, j)
of the dagramD (r) also appears in the following section in context with the avoidance of
the pattern 213 in a 132-avoiding permutation

4. Forbidden patternsin 132-avoiding per mutations

Now we will use the correspondence betwe{132 and ), for the enumeration
of multiple restrictions on permutations. The results concerning the Wilf-equivalence of
severh pairs {132 t} wheret € Sk are already known, sedl,[10, 13 14]. (We say
that {132 11} and {132 12} are Wif-equivalentif |Sp(132 11)|] = |Sh(132 12)| for all
n.) While the proofs given in these papers analytical we present bijective ones.

Theorem 4.1. Letw € Sp(132) be a permutation not equal to the identity, and>k 3.
Then

(&) = avoids Kk — 1) - - - 1if and only if D(7r) has at most k- 2 corners. In particular,
then wehavedes(m) < k — 2.

(b) 7 avoidsl2- - -k if and only if D(7r) contains the diagraln+1—k,n—k, ..., 1).

(c) m avoids213. - -k if and only if every cornefi, j) of D(x) satisfies# ] > n+3—k.

Proof. (a)

Obviously, contains a decreasing subsequence of lekgfthe diagram ofr has at
leastk — 1 comers.
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On the other hand, if there are at mést 2 comers inD(x), we havedes(r) <
k — 2 andhencer € Sp(k---1). (Note that each corner dD(sr) corresponds to a
descentinr.)

(b) If the diagram(n+1—k, n—k, ..., 1) fitsin D(x) then we haver; > n4+3—k—i for
alli. Herce any increasing subsequencea$ of length at mosk —1: if 7j = n4+3—k—i
theni — 1 elemerdfromi + k — 3 manyonesinifn+4—k—i,n+5—k—i,...,n}
appearinry - - - mi—1.

Converséy, leti be the smiest integer with 4+ 7; < n+ 3 — k. Furthermore, choosg
suchthatzj = n+ 3 —k —i (by definition ofi, we havej > i), and letr;, < --- < mj_,

be the &ementsofn+4—k—i,n+5—k—i, ..., n} which ae notequal tors, ..., mji_1.
Note thatj < iy < --- < ik_2 sincer is 132-avoiding. Thustizjmi, - - - 7j,_, iS @an
increasing sequence.

(c)

Let (i, j) be the top corner oD () for whichi + j < n 4+ 3 — k. By removing
the rows 1...,i and the columnsy, ..., 7j, we obtain the diagram of a permutation
o € Sp—i (132 whose letters are in the same relative orderas - - - mn whereop =
miv1 < | < m. As discussed inte proof of part (b), the elemeat is the firgd one of an
increasing sequee of lengthin — i) — o1+ 1ino. (Sinceo; < j <n+3—k—i the
indexl = 1 is the smHest one withl + 01 < (n—1i) + 3 —k.) Clearly, the firstj + 1 — o1
terms ae restricted byj . Thus there is an increasing sequence of lengti + j) > k—3

in o whose all elements are larger than Note hat the elementg+1, j +2,..., 7 — 1
appearinry - - - mi—1.

To prove the converse, suppose that every cornéb@f) satisfies the condition given
above. Then we haveri +i > n+ 3 — k foralli € D(xw). Hence for each descent
i of w there exist at most—3 elementsrj with j > i andrj > m;. Sincer is 132-avoiding
these elements form an increasing sequence. Thus there is no pattern- X134
inz. O

Remarks4.2. (a) From the statement of (a), iblfows that the maximum length of a
decreasing subsequencenofe Sp(132) is equal to the number of corners &f(r) plus
one, or in terms of perotdion statisticsdes(r) + 1. It is wdl known that the length of
the longest decreasing sequence can easily be obtained for any permutajpwianthe
Robinson—Schensted correspondence: it is just the number of rows of one of the tableaux
P andQ corresponding tar € Sp.

It is clear from the construction that every left-to-right-minimunmofppears in the
first column of P. Any other entry of this column must be the largest element of a
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132-subsequence im. Hence in case of 132-avoiding permutations the elements of the
first column of P are precisely the left-to-right-minima. As observedSaction 2 these
minima are just the descent bottoms and the first letter.ofhus forr € S,(132) the
tableauP hasdes(w) + 1 rows.

(b) By part (b), the length of a longest increasing subsequenge®fS, (132 equals
the maximumvalue ofi + 1 —i — A; with 1 <i < n — 1 wherei; > 0 is the lagth of
theith row of D (). This also llows from [11, p. 9] according to which; is equal to the
ith component of theode ofr, that is, tle number of integerg > i satisfyingrj < mj.
Thusn —i — Aj counts the number of elements on the rightpfvhich are larger than.
(Sincer contains no pattern 132 these elements appear in increasing order.)

Corollary 4.3. [S,(132k(k — 1)---1)] = ¥ 1(M)(") for all n and k > 3.
In particular, there ared(7)(,",) permutations inS,(132) whose longest decreasing

subsequence has length exactly k.

Proof. As mentoned inRemarks 2.6), the number of partitions i), whose diagram
has exactly corners is equal to the Narayana numign, i +1) = 1(")(. ;). Thus there

iNi+1
are}"“"¢ N(n,i + 1) diagrams with at most — 2 comers. [J

The following result also follows from a special case bd,[Theorem 2.6].
Corollary 4.4. |Sp(132 12---K)| = |Sn(132 213---k)| foralln and k> 3.

Proof. There is a simple bijection betweerettesticted diagrams Wwich contain(n + 1 —
k,n—k,...,1) and those ones whose all corners satisfy the conditier) > n+ 3 —k.
(Note tha theempty diagram associated with the identitySinbelongs to the latter ones.)
For each cornefi, j) ofthedagram(in+1—-k,n—k,...,1)wehave + j =n+2—Kk.
Thus every diagram containing + 1 — k., n — k, ..., 1) is uniquely determined by its
corners outside this shape (which are precisely the corners with> n + 3 — k). Given
such a tagramD, the corresponding diagra’ is defined to be thatne whose corners
are the corners dD which arenot contained ifn + 1 — k,n —k, ..., 1). Convergly, for
any diagranD’ whose all corners satisfyt- j > n+ 3 —k we construct the corresponding
diagramD as the unionoD’ and(n+1—-k,n—k,...,1). O

Theorem 4.1deals with patterns whose existence in a 132-avoiding permutation can be
checked without effort. The characterization of the avoidance of the patterns considered
now is more technical.

Given a permtdion 7 € Sp(132), let A1, ..., A bethe positive parts of the partition
with diagramD (). Letay = n— (i + ) fori = 1,..., 1 andbj = n— (i + 1)) for
i =1,..., 21 where)’ denotes the conjugate ®f Furthemore, fori = 1, ..., 1, leth; be
the length of the longest increasing sequenchkjt,; —1 - - - b1 whose first element iy, .
We call the numbeh; the height of a. In paticular,a anda; are of the same height if
Al =Aj.

For examplethe permutationmt = 8 954 6 7 2 3 10 1€ S10(132 generates the
diagramofA = (7,7,4,3,3,3,1,1, 1):
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108 9 7 7 8 9

O ©W 0 ©W NN O ©
[ ]

=

The numbers + ; andi + A{ are given on the left-hand side and on the top of the
diagram, respectively.

So weobtaina(zr) = (2,1,3,3,2,1,2,1,0) andh(z) = (3,3,1,2,2,2,1,1,1).
(Note that we have(r) = (0,2,1,3,3,2,1).)

Theorem 4.5. Letr € Sp(132) be a permutation, and let(@), h(xr) be as above. Then

avoids the pattern+1) - - - k12---(s—1), where2 < s < kand k> 3, if and only if the
longest decreasingubsequence of(a) whose final term is an element of heigtg — 1 is

of length at most k- s.

Proof. Leti; be an integer such thaf, > g; foralli < i;. Herce a decreasing sequence
whose first element ig;, cannot be extended to the left. Thian < ij,—1 wherexo := n.
(Note tha theconditioni; < Aj_1 is equivalentta_1 < a.) As shown inSection 2 the
elementr;, is a left-to-right minimum ofr. Thus any increasing subsequenceihich
starts withr;, is left maximal. In particular, we have, = Aj, + 1.

Now leta; be an element oi(r) with aj < aj;, j > i1, andaj;+1,...,8j-1 > @;.
Sincej —i > Aj—Ajfori =ig,iz+1,...,]—1,alltheelements; +1,Aj +2,..., 1),
occur inmj, 417 42 - - - wj 1. Hercemj, < mj.

Consequently, ifa, > a, > --- > &, withi; < iz < --- < ir IS a sguence

such that there is no integarwith iy < i < ij;1 anda, > a > a,, for anyl, then
7, < mj, < --- < m, IS an increasing subsequencemivhich is maximal with respect
to the propety thatrj, ands, are its first and last elementgspectively. Note that the
relaionsmi, < mj, where 2<| <r imply thatx;,, ..., 7, is increasing since avoids
the pattern 132.

It is clear from the definition thdt; is the maximal length of an increasing sequence
formed from dots southwest of the d6t nj), beghning with the top dot southwest of
(i, 7). Thus, ifa;, is an element of heights — 1 then here exist at least — 1 integers
ir <ji<ijo<- < jsaawithmj, < --- < mj,_, < m,. Sincer is 132-avoiding, we
even haverj, < --- < mwj,_, < mj;. Choosing 1 andi; minimal and maximal, respectively,
proves the assertion.(]

For any permtaion = € S,(132), denote byls(rr) the largest integer suchthat &
contains the patters(s + 1) - - -112. - - (s — 1) wheres > 2.

For example,ift =89546723101wehave(r) =I13(r) =ls(r) =5.

By the the@rem,ls() is equal tos — 1 plus the maimum length of a decreasing
sgquence im(r) whose smallest element is of height at least 1.



A. Rdfegerste / European Journal of Combinatorics 24 (2003) 759-776 769

Clearly, the sequence(zr) = (I2(r) — 1,13(w) — 2,...) is a partition, that is,
Is(x) + 1 > ls11() for all s. Sincerr avoids the mtterns(s + 1) ---k12...(s — 1) if
and only if no patterik + 2 — s)(k + 3 —s)---k12--- (k + 1 — s) occurs inz 1, the
patition L (1) is the conjigate ofL (). (Obviously, for any ermutationr € Sy the
diagram of the inverse —1 is just the transpose @ (xr). Herce the setS,(132) is closed
under inversion.)

Remark 4.6. Using the relation between the diagr&ngr ) and the Dyck pathg (), itis

easy to see that the numlagtris just the height at which thieh down-step ofék () ends.
(Here we only consider the down-steps before the last up-step.) The nummbeeded for

the construction ofi(;r) are (in reverse order) the starting heights of the up-steps after the
first down-st@. Denoting theth down-step indk () by d;, the integerh; () is precisely

the difference between the maxam height of a peak to the right df and the height of

the first valley followingd;. Herce in cases = 2, the theorem yields the second part of
[10, Lemmad].

We shall pove now hat the number of permutations &, which avoidboth 132 and
the patterrs(s+ 1) - - - k12 .. (s — 1) wherek > 3 and 1< s < k doesnotdepend ors.

Proposition 4.7. Let 7 € Sp(132), and let | be the maximum length of an increasing
subsequence of. Thens corresponds in a one-to-one fashion to a permutatiore
Sn(132) with I2(o) = 1.

Proof. Let A and u be the partitions whose diagrams coincide withz) and D(o),
respectively. Given. = (A1, ..., An—1) € Vh, We define tle s@uencei by
LA+l if A +i <n
e {O if i +i=n

fori = 1,...,n— 1, and obtain the partitiom by soting /i. (Delee all partsij = 0
with nonzergi;+1 and add the corresponding number of zeros at the end of the sequence.)
It is obvious thatu € ), and itis easy to see that the map— u is injective, and thus
a bijedion on Y. To reover from p, first seth; = ui — 1 for all positive ;. Then for
eachu; = 0, letj be the largest integer for Whidh +j > n—1, and redefiné to be the
sgquence obtained by insertimg— 1 — j betweerﬁj andijﬂ. If thereis no such integer
j, then pepench — 1 to . Thepartition resulting from this procedure equals

Consider now the sequen@r) = (N — i — Aj)i=1,...n—1. (For the shitement of
Theorem 4.5t suffices to consider the reduced sequea¢e) which is obtained by
omitting the final termsg = n — i.) By Remarks 4.0), we havel = maxg + 1
where 1< i < n — 1. Let j; be an irteger satisfyingaj; = | — 1. As mentioned in
Remark 4.6theith down-step ofék () lands on the leved; (;r). In paticular,| is equal
to the maximum hight of a peak ofék (7). Therdore, it is obvious tat there exist some
integersjy < jo <--- < jlmi <n—1witha; =1 —ifori =1,...,1 — 1. Clearly, the
indicesjy, ..., ji—1 can be chosen in a way that(r) > Oforall js < j < ji_1.

By the constructin, the elements of the sequerei@) correspond to the nonzeros
of a(r). More adly, we haveaj (o) = «j — 1+ B whereqa; denotes theth positive
element ina(;r), andg; counts the number of zeros to the leftagf Thus the elements
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correspondingta;,, &j,, ..., aj_, form a decreasing sequence of maximal leng#(i).
Consequently, we have(o) = (I —1)+1. (Note that the height of any elemexis always
positive duego the definition.) O

Example 4.8. Consider the permutation = 54 6 7 2 1 3 e S7(132. Its longest
increasing subseqoee is of length 3. As described in the proof, we obtain the diagram
of the corresponding permutation= 657 3 2 1 4 S7(132) from D(rr):

[ ]
o OO N O
[ ]

o O ~N o gag

D () D (o)

The length of the longest decreasing subsequence on the positive teans)ot=
(2,2,1,0,1,1) coincides with the length of the longest decreasing sequenaéin=
(1,1,0,1, 1); itequals 2. Thu$z (o) = 3.

The following result can be derived from the corresponding generating functions which
were given br the first time by Chow and West4([ Theorem 3.1]). Several different
analytical proofs ppeared recently in10, Theorems 2 and 6] andlpB, Theorem 3.1].

Corollary 4.9. |5,(132 12---k)| = |Sp(132 23- - -k1)| = |Sp(132 k12- - - (k — 1))| for
allnand k> 3.

Proof. The first identity is an immediate coeguence of the preceding proposition.
For the £cond one use that avoids 23 --k1 if and only if 71 contains no pattern
k12---(k—1). O

Now we will generalize the result frofroposition 4.for anys > 2.

Proposition 4.10. Letr € Sn(132), and let | > s — 1 be the maximum length of an
increasing shsequence af. Thenr corresponds in a one-to-one fashion to a permutation

Proof. Forl = s—1,Corollay 4.9yields the correspondence betweeand a permutation
o avoidingsl2- .- (s—1), that i, satisfyinds(o) = s— 1. Thus we may assume that s.
The reasoning is similar to that done féroposition 4. {we preserve the notation) but
the analysis of the bijectioh — u requires more technical effort. (Following the proof
we give a detailed example for illustrating.)
Giveni = (A1, ..., An—1) € Yn, we define tle s@uencel by

Ai+s—1 ifra+i<n+2-—s
0 ifAxi+i=n+2-s
A 1 ifxi+i=n+3-s

s—2 if Ai +i=n
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fori =1,...,n+1—s, andjij = A; othewise, and obtain the partitiom from & by the
following procedure:

Q) Fori =1,...,n+1-s5s,if 4j > s— 1thenhcreasgi; by the number of elements
fij satisfying 1< j <iandO0< j <s—1.
(2) Fori =1,...,n+1-s,if 4j <s— 1thenincreasg@; by the number of elements

fij satisfyingi < j <n+2-sandO< fij <s— 1.
For the sak®f clearness we denote the sequence obtained nqw by
(3) Arrange the elements ¢f in decreasing order.

First we showlat the map. — w is really a bijection ory,.

Why u € Yh? Letip < i < -+ < iy < n+ 1 — s be the indices for which
A +i <n+4+2-—s,thatis,ij > s—1,andj1 < j2 < --- < jn—1_r the remaining
ones. (Because of the assumption s we haver > 1.) Furthermore, let(a, b) denote
thenumber of element8yx € {1,2,...,s— 2} witha <k < b.

Itis not difficult to see that bothi, > /.., andij, > fij,,, forsomek, andgij, > fij,.
To verify the first relation, note thatj, +ix =n+ 1 — sandii,+1 = 0 if ix andixy1 are
non-consecutive integers. Thus we only have to consider thagase ix > 2 in which
we obtain

Riger = diges +5—14¢(0,ik) + Clik, iks1)
< Aigpr +8—14+0¢(0, i) +ikr1 — ik —2
<n+1-s+s—1+c,ix) —ixk—2
=Aiy +S—1+c@Oix) —2=pj — 2

sinceij,,; +ikt1 < n+ 1 —s. For the seond relation, we may assume thatand
jk+1 are consecutive. Otherwise we havg,, = 0 as a result ofij, , 1 > s— 1, and
there isnothing to show. So, lejx+1 = jk + 1 < n+ 1 — s. By thedefinition, we have
fj = xj +Jj — (n+2— ) and thereforéij, ., < fij, + 1.In case of equality, it follows
thatc(jk, n +3—5s) = c(jk + 1, n+ 3 —s) + 1 andhencegj, = ftje - If Ljs < iy
we havegij, > ftj,,, sincec(jk,n +3 —s) > c(jk +1,n+ 3 —s). Furthemore, the
map is defied n a way thatiij = 4j = Aj <s—2forn+2—-s < j <n-1.
If jx = n+1—swe haveiny1-s > 1 (otherwise we would havgj, = s — 1) which
yields fij, = Anj1—s —1+c(h+1—-sn+3—-5) > Ani2_s. TO shav the rdation
i, > fLj;, note thatc(ir, n + 3 — s) < A, sincerj, +ir = n+1—sandjij 41 = 0.
Thus the assertion follows immediately fier= j1 — 1 (which is te only possible case
satisfyingiy < j1). If j1 < iy we have

jy = j; +C(ja,ir) +Clir,N+3—195) <S—2+4C(ja,ir) + A,
Consequentlyk = fij, forl < k <r anduk = fij_, forr+1 <k < n—1.Inparticular,
the partitionsh andu coincide in the finak — 2 parts. Therby it becomes obvious why

1 € Yn. On theone hand, we havex + k < n for all k < r sincef;, is increased at most
by the number of indice$ < ik with jij < s— 2. On the other hand, we obtain
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uk + K= tj, + jkr + I{i > jkr 1 i =s—1}|
< fjgy + Jkr +Nn+1—=5— jkr —C(jk—r.N+2—5)
= Ajr + Jker —(N+2—9) +C(jk—r,N+3—59)
+n+1-s—c(jk—r,N+2~-59)
= Ajyr + Jker =L+ C(jk—r.N+3—5) —C(jk—r.N+2—9)
< Ay + Jk—r =0
fork=r+1,...,n+1-s.

How does the inverse map work? The partitiorcan be recovered from by the
following procedure. Here, ldétbe the greatest integefor whichh; (o) > s — 1.

(1) Lethi = pui —(s— 1 fori =1,...,tandij = uj fori =n+2—s,...,n—1.

(2) Fori=n+1—sn—s,...,t+1,lethi = pui — c wherec denotes the number of
the positive elementfsj satisfyingi < j <n+4+2-s.

(3) Initialize X = A. Fori =t+1,...,n+1—s,increase,; by n+2—s—i. Furthermore,
letc; = 1if Aiis a positive mteger and = O otherwiseand seff =i. While j > 1
andij_1 < ij, reflaceij_1 with ij + 1 andi; with i;_1 — ¢, anddecreasg
by 1. This routine yields just the partition

Finally, why we havds(o) = |? To answerhis, we compare the sequen& g ) and
a(o) again. By the previous discussion, thelements exceedirg}- 2 in a(xr) correspond
to the firstr elements ofi(c). More eadly, we havedk(o) = &, (7)) — (S — 1) + Bk,

for k = 1,...,r where gk counts the number of elemerig(r) = s — 2 sdisfying
j < ik. The remining elements ofi(c) can be determined b& k(o) = &j, () + Bk,
fork = 1,...,n —1—r wheregk counts now the number of elemergr) = s — 2

satisfyingjk < j < n+ 2 — s. The relevat sequenca(o) is obtained by omitting the
termsay = n — k. (Notethata(o) contains at least the firstterms sinceu, is always
positive.) In contast tothe cases = 2, now we have to take the heights of the elements
into consideration. The elemeaft(o) is of height at leass — 1. By Remark 4.6weobtain

hr (o) as difference between the maximum height of a peak to the right aftthéown-
step of ¥k (o) and the height of the first valley following this step. As shown above, we
haveu, > ur+1. Thus the valley in question is of height-r — u, = & (o). Theheight

of the peak equals mak (o) + 1 wherer <i < n— 1. From the above derivation follows
the existence of somiefor which g (o) — & (o) > s — 2. In addition, the th element

is the last one ira(o) whose height is greater than— 2. By the construction, we have
uk — pk+1 < s— 2 fork > r. Thusthe original definition of the height of an element
yields immediatehhg (o) < s— 2 for allk > r. Consequently, the integémhich appears

in the description of the inverse map is preciselBy reasoning similar as applied in the
cases = 2, we obtainls(o) = |. (The length of the longest decreasing subsequence of
(@i, (), &, (), ..., &, (7)) equald + 1 — s and coincides with the length of the longest
decreasing subsequence@af(o), ax(o), ..., & (0)).) O

Example 4.11. Consider the permutation = 121085647 239 11 k S512(132. Its
longest increasing subsequence contains five elements. We determine the corresponding
permutations for s = 4. Stating with D (), we obtain the diagram of as follows:
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A= D(r) i I u=D(o)

Fori < 9, the terms of the sequengadepend on the differences+i — 10. In case of
a negative ifference, we increasy by 3, otherwisgy; is just defined to be the difference.
(In the array, the first ones are the light grey parts.) The final two terns afid &
coincide by the definition. The procedure makes changés fo. ., [ig as follows. Step
one increases each light grey part by the number of (positive) dark grey parts above it (in
this example, at each case by two) while step two increases eacliitdraing at most 2
by the number of (positive) dark grey parts below it. (Note thgj is counted in if it is
positive.) Inthis way, we obtaini, andby sorting the parts in decreasing order, finally, the
partition p.

This construction associates the termsagf) = (0,1,2,4,3,3,2, 3, 2,1, 0) which
are greater than 2 with the elementsaqb) = (2,1,1,2,3,4,4,3,2,1,0) being of
height at least 3 or having an element ddight at least 3 to their right. (We have
h(o) = 4,4,4,3,2,1,1,1,1,1,1).) The length of the longest decreasing subsequence
is the same for these two (underlined) subsequences; it equals ZhBgrem 4.5we have
l4(c) =3+2=5.

To complete the picture, we illustrate the working of the inverse map, applied to the
patition © = (9,9,8,6,4,2,1,1,1, 1, 1). The maimum index of an elemers; (o) of
height at least 3 is = 4. The first two procedure steps generate the sequence

(6,6,5 3] %, %,%, %, %x|1,1) — (66,5 3]*,%,% % 0|11
— (6,6,5,3]%,%,%0,0]1,1)
— (6,6,5,3]|*,%,0,0,0]1,1)
— (6,6,5,311,0,0,0|1,1
— (6,6,5,3]12,1,0,0,0|1,1).

(The bars mark the intervalg, t], [t + 1, n+ 1 —s], and[n + 2 — s, n — 1].) Now for

i =5,...,9,increase, by 10— i, and exchnge the term with the previous one while as
the firsti elements of the sequence are in decreasing order. Any element putting to the left
is increased by 1, any element putting to the right is decreased by isifinon-zero.

i=5:(cs=1

(6,6,5,3,7,1,0,0,0,1,1) — (6,6,5,8,2,1,0,0,0,1, 1)
— (6,6,9,4,2,1,0,0,0,1,1)
— (6,10,5,4,2,1,0,0,0,1,1)
— (11,5,5,4,2,1,0,0,0,1, 1)
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i=6:(c=1

(11,5,5,4,2,5,0,0,0,1,1) — (11,5,5,4,6,1,0,0,0,1,1)
— (11,5,5,7,3,1,0,0,0,1, 1)
— (11,5,8,4,3,1,0,0,0,1, 1)
— (11,9,4,4,3,1,0,0,0,1, 1)

i=7:(c;7=0)

(11,9,4,4,3,1,3,0,0,1,1) — (11,9,4,4,3,4,1,0,0,1,1)
— (11,9,4,4,5,3,1,0,0,1, 1)
— (11,9,4,6,4,3,1,0,0,1,1)
— (11,9,7,4,4,3,1,0,0,1, 1)

i=8:(cg=0)
(11,9,7,4,4,3,1,2,0,1,1) — (11,9,7,4,4,3,3,1,0,1, 1)
i =9:(co=0)

(ll’ 97 7’ 47 4’ 37 3’ 17 l’ 17 l)
In this way we obtain the partitiofl1, 9,7, 4, 4, 3, 3,1, 1, 1, 1) which is jug equal toA.

Proposition 4.10yields immediately the following result that was proved in an
analytical way by Mansour and Vainshtet¥] Theorem 2.4].

Corollary 4.12. |Sp(132 12---K)| = |Sn(132 s(s+ 1) ---k12...(s— 1))| for all n and
k>3and2 <s<k.

5. Afinal note

As shown in Section 2 the permutation diagram indicates whether or not the
permutation contains the pattern 132. If so, we even obtain the exact number of
occurrences.

In [9], Fulton defined the following rank function on the essential set. Given a corner
@i, j) of the dagramD(r), i.e.(i, j) € E(w), its rankis defined to be tanumber of dots
northwest of it and is denoted ki, j).

Itis clear from the construction that the number of dots in the northwest is the same for
all diagram squares which are connectddrce we can extend the rank function Drirr).
The information about the number of sequenaktype 132 contained in a permutation is
encoded by the ranks of its diagram squares.

Theorem 5.1. Letw € S, be apermutation, and let @) be its diagram. Then the number
of occurrences of the patte82in = is equal to

Y. el

(i,j)eD(m)
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Proof. It is easy to see that each squdiej) of D(;r) corresponds to exactly(, j)
subsequences of type 132 in, nanely the sequencels 7j | wherek ranges over all
column indices of dots northwest @f |):

k... J e O

Remark 5.2. As mentoned above, we hay® (r)| = inv(xr) for all # € Sp. Herce the
non-weighted sum}_; j)cp ) 1 counts the number of occurrences of the pattern 2d.in

Example5.3. The ranked diagramof =428369751 1& Sipis

0/|0|0|@®
0
0 1 212|2|@
0
0 3@
0 3 4 [ ]
0 3 [
0 (]
(]
[J

Thusz contains 20 subsequences of type 132 and 18 inversions.

The first enumerative result concerning permutations that contain a given positive
numbenr of occurrences of the pattern 132 was given lmnB R]. He showed that there
are (%]":33) permutations inS, which contain 132 exactly once. (BYyheorem 5.1these
permutations are characterized to be such ones having exactly one diagram square of rank
1 andonly rank O squares otherwise.) 145, Mansour and Vainshtein determined the
generating function for the number of permutationsjphaving exactly occurrences of

pattern 132 for alt > 0.
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