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Abstract

The diagram of a 132-avoiding permutation can easily be characterized: it is simply the diagram
of a partition. Based on this fact, we present a new bijection between 132-avoiding and 321-avoiding
permutations. We will show that this bijection translates the correspondences between these
permutations and Dyck paths given by Krattenthaler and by Billey–Jockusch–Stanley, respectively,
to each other. Moreover, the diagram approach yields simple proofs for some enumerative results
concerning forbidden patterns in 132-avoiding permutations.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

LetSn denote the symmetric group on{1, . . . , n}. Givena permutationπ = π1 · · ·πn ∈
Sn and a permutationτ = τ1 · · · τk ∈ Sk, we saythatπ contains the patternτ if there is
a sequence 1≤ i1 < i2 < · · · < i k ≤ n such that the elementsπi1πi2 · · · πik are in the
same relative order asτ1τ2 · · · τk. Otherwise,π avoids the patternτ , or alternatively,π
is τ -avoiding. For any finite set{τ1, . . . , τs}, we write Sn(τ1, . . . , τs) to denote the set of
permutations inSn which avoid each of the patternsτ1, . . . , τs.

It is an often quoted fact that|Sn(τ )| is equal to thenth Catalan numberCn =
1

n+1

(2n
n

)
for each patternτ ∈ S3. Because of obvious symmetry arguments, from an

enumerative viewpoint there are only two distinct cases to consider,τ ∈ {123, 321} and
τ ∈ {132, 213, 231, 312}. Several authors established bijections between permutations
avoiding a pattern of each of these classes. The first one was given by Simion and Schmidt
[18]; West described in [19] a construction using trees; and recently, Krattenthaler [10]
connected 123-avoiding and 132-avoiding permutations via Dyck paths.

In Section 2, we present a simple bijection betweenSn(321) and Sn(132) basing
on another interesting combinatorial object, the diagrams. Our correspondence has the
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advantage that the excedances of a permutation inSn(321) are precisely the descents of
its image inSn(132).

An excedance ofπ is an integeri ∈ {1, . . . , n−1} suchthatπi > i . Here theelementπi

is called anexcedance letter forπ . Givena permutationπ , we denote the set of excedances
of π by E(π) and the number|E(π)| by exc(π). An integeri ∈ {1, . . . , n − 1} for which
πi > πi+1 is called adescent ofπ . If i is a descent, we say thatπi+1 is adescent bottom
for π . The set of descents ofπ is denoted byD(π), its cardinality is denoted bydes(π),
as usual.

There are several one-to-one correspondences between restricted permutations and
lattice paths, in particular, Dyck paths. ADyck path is a path in the (x, y)-plane from
the origin to(2n, 0) with steps[1, 1] (called up-steps) and[1,−1] (called down-steps) that
never falls below thex-axis.

For 321-avoiding permutations, such a bijection was given by Billey et al. [1]; for
132-avoiding permutations, Krattenthaler proposed a correspondence to Dyck paths in [10].
In Section 3, we will show that the Dyck path obtained for anyπ ∈ Sn(321) by the first
mentioned correspondence coincides with the Dyck path associating by Krattenthaler’s
correspondence with the image (with respect to our bijection)σ ∈ Sn(132) of π .

Moreover, it will turn out that the diagram of a 132-avoiding permutation is closed
related to the corresponding Dyck path.

In Section 4, the diagram approach will be used to obtain some enumerative results
concerning the restriction of 132-avoiding permutations by additional patterns. These
results are already known (see [12]) but we will give bijective proofs for them.

The paper ends with a note on how to obtain the number of occurrences of the pattern
132 in an arbitrary permutation via the diagram.

2. A bijection between 132-avoiding and 321-avoiding permutations

LetYn = {(λ1, . . . , λn−1) : 0 ≤ λn−1 ≤ λn−2 ≤ · · · ≤ λ1 ≤ n−1, λi ≤ n− i for all i }
be the set of partitions whose Young diagram fits in the shape(n − 1, n − 2, . . . , 1).
(We will identify a partition with its Young diagram and vice versa.) In [16] respectively
[17], we have already described a bijection betweenYn and a class of pattern-avoiding
permutations, namelySn(321). For 132-avoiding permutations, a simple one-to-one
correspondence to partitions with restricted diagram can be given, as well.

The key object in our derivation is thediagram of a permutation. (For an introduction
see [11, Chapter 1].) Given a permutationπ ∈ Sn, weobtain its diagramD(π) as follows.
Let π be represented by ann × n-array with a dot in each of the squares(i , πi ). (The other
cells are white.) Shadow all squares due south or due east of some dot and the dotted cell
itself. The diagramD(π) is defined as the region left unshaded after this procedure.

Recovering a permutation from its diagram is trivial: row by row, put a dot in the
leftmost shaded square such that there is exactly one dot in each column.

Example 2.1. The diagram ofπ = 4 2 8 3 6 9 7 5 1 10∈ S10 contains the white squares of
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By the construction, each of the connected components ofD(π) is a Young diagram.
Their corners are defined to be the elements of theessential setE(π) of the permutationπ .
In [9], Fulton introduced this set which together with a rank function was used as a tool for
algebraic treatment of Schubert polynomials. In [7], Eriksson and Linusson characterized
the essential sets that can arise from arbitrary permutations, as well as those coming from
certain classes of permutations.

It is very easy to characterize the diagrams of 132-avoiding permutations.

Theorem 2.2. Let π ∈ Sn be a permutation not equal to the identity. Thenπ is 132-
avoiding if and only if its diagram consists of only one component and(1, 1) ∈ D(π).

Proof. If there are indicesi < j < k suchthatπi < πk < π j , then the square( j , πk)

belongs toD(π), but it is not connected with(1, 1):

i

j

k

Clearly, the existence of such asquare is also sufficient forπ containing the pattern 132.
Note that the square(1, 1) must be an element ofD(π) for any 132-avoiding

permutationπ �= id, otherwise we would haveπ1 = 1 and henceπi = i for all
i = 1, . . . , n. �

Thus the diagramD(π) of a permutationπ ∈ Sn(132) is the graphical representation
of a partition. By construction,D(π) is just the diagram of an element ofYn: the square
(i , j (i )) belongs toD(π) if and only if no indexk ≤ i satisfiesπk ≤ j . Thus we have
j (i ) ≤ n − i .

In [17, Remark 3.6], a simple one-to-one correspondence betweenSn(321) andYn was
given. It is characteristic for 321-avoiding permutations that the subwords consisting of
the excedance letters and the non-excedance letters, respectively, are increasing. Therefore
such a permutation is uniquely determinedby its excedances and excedance letters.
Consequently, the map which takesπ ∈ Sn(321) with excedancesi1, . . . , i e to the Young
diagram with corners(i k, n + 1 − πik ), for k = 1, . . . , e, is bijective.
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Composing both bijections, that one fromSn(321) to Yn, and thatone fromYn to
Sn(132), yields abijection between 321-avoiding and 132-avoiding permutations which
is denoted byΦ in the following.

Example 2.3. For thepermutationπ = 1 4 7 2 3 85 6 10 9 ∈ S10(321) we have
E(π) = {2, 3, 6, 9}. Hence it corresponds to the 132-avoiding permutation having the
diagram

that is,Φ(π) = 8 9 5 4 6 7 2 3 10 1∈ S10(132).

It is an essential property ofΦ that it respects classical permutation statistics.
As observed by Fulton in [9], every row of a permutation diagram containing a white

corner (that is, an element of the essential set) corresponds to a descent. Thus we have
des(Φ(π)) = exc(π) for all π ∈ Sn(321). But there is more to it than that: the excedance
set ofπ and the descent set ofΦ(π) have not only the same number of elements; the sets
are even identical.

Proposition 2.4. WehaveE(π) = D(Φ(π)) for all π ∈ Sn(321).

Proof. Any excedancei of π corresponds to a corner(i , n + 1 − πi ) of D(Φ(π)).
Obviously, by constructingΦ(π) from its diagram we obtain a descent ofΦ(π) at the
position i . �

Remarks 2.5. (a) As mentioned above, every 321-avoiding permutation is completely
determined by its excedances and excedance letters. Ourbijection shows that it is sufficient
for fixing a 132-avoiding permutation to know the descents, the descent bottoms, and the
first letter. Leti1 < · · · < i e be the excedances ofπ ∈ Sn(321), and letσ = Φ(π). Then
we have

σ1 = n + 2 − πi1, σik+1 = n + 2 − πik+1 , σie+1 = 1

wherek = 1, . . . , e− 1. It is clear from the construction that these elements are precisely
the left-to-right minima ofσ . (A left-to-right minimumof a permutationσ is an elementσi

which is smaller than all elements to its left, i.e.,σi < σ j for every j < i .) Based on this,
we can determine the permutationσ since it avoids 132.

For example, letπ = 1 4 7 2 3 85 6 109 ∈ S10(321) again. (The underlined positions
are just the excedances ofπ .) As described above, we obtain the left-to-right minima of
Φ(π) and their positions

8 ∗ 5 4 ∗ ∗ 2 ∗ ∗ 1,
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and hence, by putting the remaining elementsa = 3, 6, 7, 9, 10 on the first possible
position following a − 1, the permutation Φ(π) = 8 9 5 4 6 7 2 3 10 1.

(b) In [17, Corollary 3.7], we prove that the number of excedances is Narayana
distributedoverSn(321). Using the correspondence betweenSn(321) andYn, this fact can
be derived from a result given in [6] concerning the distribution of Dyck paths according to
thenumber of valleys. Therefore, there are1

n

(n
k

)( n
k+1

)
permutations inSn havingk descents

and avoiding the pattern 132.

3. Correspondences to Dyck paths

Both for 321-avoiding and for 132-avoiding permutations, one-to-one correspondences
to lattice paths were given by several authors. In [1, p. 361], Billey, Jockusch, and
Stanley established a bijectionΨB J S between 321-avoiding permutations on{1, . . . , n}
and Dyck paths of length 2n. Recently in [10, Section 2], Krattenthaler exhibited a Dyck
path correspondenceΨK for 132-avoiding permutations. Our bijectionΦ translates these
constructions into each other.

Theorem 3.1. Letπ ∈ Sn(321). Then we haveΨB J S(π) = ΨK (Φ(π)).

Proof. Let π ∈ Sn(321) have the excedancesi1 < · · · < i e, and letσ = Φ(π). The
bijectionΨB J Sconstructs the Dyck path corresponding toπ as follows:

(1) Let ak = πik − 1 for k = 1, . . . , e anda0 = 0, ae+1 = n. Furthermore, letbk = i k
for k = 1, . . . , e andb0 = 0, be+1 = n.

(2) Generate the Dyck path (starting at the origin) by adjoiningak − ak−1 up-steps and
bk − bk−1 down-steps, fork = 1, . . . , e+ 1.

As shown in the preceding section, the elements

c1 := σ1 = n + 2 − πi1,

ck+1 := σik+1 = n + 2 − πik+1 for k = 1, . . . , e− 1,

ce+1 := σie+1 = 1

are the left-to-right minima ofσ . With the conventionc0 = n + 1 we haveck−1 − ck =
ak − ak−1 for all k = 1, . . . , e + 1. For the numberdk of the positions between the
kth and (including) the(k + 1)st left-to-right minimum we obtaindk = bk − bk−1 for
k = 1, . . . , e + 1. (Let n + 1 be the position of the imaginary(e + 2)nd minimum, so
de+1 = n − be.)

Hence the translation ofΨB J S by Φ constructs the Dyck path corresponding toσ ∈
Sn(132) as follows:

(1) Letc1 > · · · > ce+1 be the left-to-right minima ofσ . Furthermore, letdk be one plus
the number of the letters inσ betweenck andck+1, for k = 1, . . . , e + 1. Initialize
c0 = n + 1.

(2) Generate the Dyck path (starting at the origin) by adjoiningck−1 − ck up-steps and
dk down-steps, fork = 1, . . . , e+ 1.

But this is precisely the description ofΨK proposed in [10]. �
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Example 3.2. Let π = 1 4 7 2 3 8 5 6 10 9∈ S10(321), and letσ = Φ(π) =
8 9 5 4 6 7 2 3 10 1. Billey–Jockusch–Stanley’s bijection takesπ to the Dyck path

which is exactly the path corresponding toσ by Krattenthaler’s bijection.

It is obvious that the Dyck pathΨK (π) and the diagram of a 132-avoiding permutation
π are closely related to each other. Given a permutationπ ∈ Sn(132), its diagramD(π)

is just the region bordered by the lines between the lattice points(0, 0) and (n, n) and
between(n, n) and(2n, 0), respectively, and the pathΨK (π). (Thenorthwest-to-southeast
diagonals correspond to the diagram columns.)

Example 3.3. Forπ = 8 9 5 4 6 7 2 3 10 1∈ S10(132) we obtain:

Remarks 3.4. (a) In [8, p. 7], Fulmek gave a graphical construction of Krattenthaler’s
bijection in terms of permutation graphs. For312-avoiding permutations, he pictures the
construction as follows. Representπ ∈ Sn(312) as ann × n-array with adot in the
square(n + 1 − πi , i ). Consider all squares which lie below and to the right of some dot
representing a left-to-right maximum, that is, of some dot having no dots to its northwest.
(A left-to-right maximumis an element which exceeds all the elements to its left.) Define
the path to be the upper boundary of the union of these squares. This yieldsΨK (σ )

whereσ is the permutation obtained fromπ by replacingπi with n + 1 − πi . (Notethat
σ ∈ Sn(132).)

(b) In [3], Brändén et al. studied the numberek of increasing subsequences of length
k + 1 in 132-avoiding permutations. By means of Krattenthaler’s correspondence, the
statisticsek were translated into Dyck path characteristics. In particular, the sum of heights
in ΨK (π) equalse0(π) + 2e1(π) whereπ ∈ Sn(132). (Here theheight wi of the i th
path stepis defined to be the ordinate of the starting point.) This fact becomes immediately
clear from the relation between the path and diagram. For any permutation inSn, the square
number of its diagram is equal to the number of its inversions (see [11, p. 9]). Consequently,
we havew1 + · · · + w2n = n2 − 2inv(π) for all π ∈ Sn(132).

(c) In the same paper, the distribution of right-to-left maxima overSn(132) was
determined. (An element is called aright-to-left maximumif it is larger than all elements
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to its right.) Therefore, thenumber of permutations inSn(132) with k such maxima equals
theballot number

b(n − 1, n − k) = k

2n − k

(
2n − k

n

)
.

For their bijective proof, the authors of [3] used thatΨK translates any right-to-left
maximum ofπ ∈ Sn(132) into a return of the associated Dyck path. (Areturn of a Dyck
path is a down-step landing on thex-axis.) The number of returns of Dyck paths is known
to have a distribution given byb(n − 1, n − k); see [5].

By the construction ofΨB J S, a return, except the last (down-) step, appears if and only
if i is an excedance ofπ ∈ Sn(321) with πi = i + 1. The very last step ofΨB J S(π) is a
return by definition. Thusb(n−1, n−k) counts the number of 321-avoiding permutations
π havingk − 1 elementsπi = i + 1.

Furthermore, there areb(n − 1, n − k) Young diagrams fitting in(n − 1, n − 2, . . . , 1)

with k − 1 corners in the diagonali + j = n. Theconditioni + j = n for a corner(i , j )
of the diagramD(π) also appears in the following section in context with the avoidance of
the pattern 213 in a 132-avoiding permutationπ .

4. Forbidden patterns in 132-avoiding permutations

Now we will use the correspondence betweenSn(132) andYn for the enumeration
of multiple restrictions on permutations. The results concerning the Wilf-equivalence of
several pairs {132, τ } whereτ ∈ Sk are already known, see [4, 10, 13, 14]. (We say
that {132, τ1} and {132, τ2} areWilf-equivalent if |Sn(132, τ1)| = |Sn(132, τ2)| for all
n.) While the proofs given in these papers are analytical we present bijective ones.

Theorem 4.1. Let π ∈ Sn(132) be a permutation not equal to the identity, and k≥ 3.
Then

(a) π avoids k(k − 1) · · · 1 if and only if D(π) has at most k− 2 corners. In particular,
then wehavedes(π) ≤ k − 2.

(b) π avoids12· · ·k if and only if D(π) contains the diagram(n+1−k, n−k, . . . , 1).

(c) π avoids213· · ·k if and only if every corner(i , j ) of D(π) satisfies i+ j ≥ n+3−k.

Proof. (a)

Obviously,π contains a decreasing subsequence of lengthk if the diagram ofπ has at
leastk − 1 corners.
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On the other hand, if there are at mostk − 2 corners in D(π), we havedes(π) ≤
k − 2 and henceπ ∈ Sn(k · · · 1). (Note that each corner ofD(π) corresponds to a
descent inπ .)

(b) If the diagram(n+1−k, n−k, . . . , 1) fits in D(π) then we haveπi ≥ n+3−k−i for
all i . Hence any increasing subsequence ofπ is of length at mostk−1: if πi = n+3−k− i
theni − 1 elements from i + k − 3 manyones in{n + 4 − k − i , n + 5 − k − i , . . . , n}
appear inπ1 · · · πi−1.

Conversely, let i be the smallest integer withi +πi < n+3−k. Furthermore, choosej
suchthatπ j = n + 3− k − i (by definition of i , we havej > i ), and letπi1 < · · · < πik−2

be the elements of{n+4−k− i , n+5−k− i , . . . , n} which are not equal toπ1, . . . , πi−1.
Note that j < i1 < · · · < i k−2 sinceπ is 132-avoiding. Thusπi π j πi1 · · · πik−2 is an
increasing sequence.

(c)

i

j

Let (i , j ) be the top corner ofD(π) for which i + j < n + 3 − k. By removing
the rows 1, . . . , i and the columnsπ1, . . . , πi , we obtain the diagram of a permutation
σ ∈ Sn−i (132) whose letters are in the same relative order asπi+1 · · · πn whereσ1 =
πi+1 ≤ j < πi . As discussed in the proof of part (b), the elementσ1 is the first one of an
increasing sequence of length(n − i ) − σ1 + 1 in σ . (Sinceσ1 ≤ j < n + 3 − k − i the
indexl = 1 is the smallest one withl + σl < (n − i ) + 3− k.) Clearly, the firstj + 1− σ1
terms are restricted byj . Thus there is an increasing sequence of lengthn−(i + j ) > k−3
in σ whose all elements are larger thanπi . Note that the elementsj + 1, j + 2, . . . , πi − 1
appear inπ1 · · · πi−1.

To prove the converse, suppose that every corner ofD(π) satisfies the condition given
above. Then we haveπi + i > n + 3 − k for all i ∈ D(π). Hence for each descent
i of π there exist at mostk−3 elementsπ j with j > i andπ j > πi . Sinceπ is 132-avoiding
these elements form an increasing sequence. Thus there is no pattern 2134· · ·k
in π . �

Remarks 4.2. (a) From the statement of (a), it follows that the maximum length of a
decreasing subsequence ofπ ∈ Sn(132) is equal to the number of corners ofD(π) plus
one, or in terms of permutation statistics,des(π) + 1. It is well known that the length of
the longest decreasing sequence can easily be obtained for any permutation inSn via the
Robinson–Schensted correspondence: it is just the number of rows of one of the tableaux
P andQ corresponding toπ ∈ Sn.

It is clear from the construction that every left-to-right-minimum ofπ appears in the
first column of P. Any other entry of this column must be the largest element of a
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132-subsequence inπ . Hence in case of 132-avoiding permutations the elements of the
first column ofP are precisely the left-to-right-minima. As observed inSection 2, these
minima are just the descent bottoms and the first letter ofπ . Thus forπ ∈ Sn(132) the
tableauP hasdes(π) + 1 rows.

(b) By part (b), the length of a longest increasing subsequence ofπ ∈ Sn(132) equals
the maximum value ofn + 1 − i − λi with 1 ≤ i ≤ n − 1 whereλi ≥ 0 is the length of
thei th row of D(π). This also follows from [11, p. 9] according to whichλi is equal to the
i th component of thecode ofπ , that is, the number of integersj > i satisfyingπ j < πi .
Thusn − i − λi counts the number of elements on the right ofπi which are larger thanπi .
(Sinceπ contains no pattern 132 these elements appear in increasing order.)

Corollary 4.3. |Sn(132, k(k − 1) · · · 1)| = 1
n

∑k−1
i=1

(n
i

)( n
i−1

)
for all n and k ≥ 3.

In particular, there are 1
n

(n
k

)( n
k−1

)
permutations inSn(132) whose longest decreasing

subsequence has length exactly k.

Proof. As mentioned inRemarks 2.5(b), the number of partitions inYn whose diagram
has exactlyi corners is equal to the Narayana numberN(n, i +1) = 1

n

(n
i

)( n
i+1

)
. Thus there

are
∑k−2

i=0 N(n, i + 1) diagrams with at mostk − 2 corners. �

The following result also follows from a special case of [14, Theorem 2.6].

Corollary 4.4. |Sn(132, 12· · ·k)| = |Sn(132, 213· · ·k)| for all n and k≥ 3.

Proof. There is a simple bijection between the restricted diagrams which contain(n+1−
k, n − k, . . . , 1) and those ones whose all corners satisfy the conditioni + j ≥ n + 3− k.
(Note that theempty diagram associated with the identity inSn belongs to the latter ones.)
For each corner(i , j ) of the diagram(n + 1− k, n − k, . . . , 1) we havei + j = n + 2− k.
Thus every diagram containing(n + 1 − k, n − k, . . . , 1) is uniquely determined by its
corners outside this shape (which are precisely the corners withi + j ≥ n + 3− k). Given
such a diagramD, the corresponding diagramD′ is defined to be thatone whose corners
are the corners ofD which arenot contained in(n + 1 − k, n − k, . . . , 1). Conversely, for
any diagramD′ whose all corners satisfyi + j ≥ n+3−k weconstruct the corresponding
diagramD as the union ofD′ and(n + 1 − k, n − k, . . . , 1). �

Theorem 4.1deals with patterns whose existence in a 132-avoiding permutation can be
checked without effort. The characterization of the avoidance of the patterns considered
now is more technical.

Given a permutation π ∈ Sn(132), let λ1, . . . , λl bethe positive parts of the partition
with diagramD(π). Let ai = n − (i + λi ) for i = 1, . . . , l andbi = n − (i + λ′

i ) for
i = 1, . . . , λ1 whereλ′ denotes the conjugate ofλ. Furthermore, fori = 1, . . . , l , let hi be
the length of the longest increasing sequence inbλi bλi −1 · · · b1 whose first element isbλi .
We call the numberhi theheight of ai . In particular,ai andaj are of the same height if
λi = λ j .

For example, the permutationπ = 8 9 5 4 6 7 2 3 10 1∈ S10(132) generates the
diagram ofλ = (7, 7, 4, 3, 3, 3, 1, 1, 1):
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8

9

7

7

8

9

8

9

10

10 8 9 7 7 8 9

The numbersi + λi and i + λ′
i are given on the left-hand side and on the top of the

diagram, respectively.
So weobtain a(π) = (2, 1, 3, 3, 2, 1, 2, 1, 0) and h(π) = (3, 3, 1, 2, 2, 2, 1, 1, 1).

(Note that we haveb(π) = (0, 2, 1, 3, 3, 2, 1).)

Theorem 4.5. Letπ ∈ Sn(132) be a permutation, and let a(π), h(π) be as above. Thenπ
avoids the pattern s(s+1) · · ·k12· · · (s−1), where2 ≤ s ≤ k and k≥ 3, if and only if the
longest decreasingsubsequence of a(π) whose final term is an element of height≥s− 1 is
of length at most k− s.

Proof. Let i1 be an integer such thatai1 ≥ ai for all i < i1. Hence a decreasing sequence
whose first element isai1 cannot be extended to the left. Thenλi1 < λi1−1 whereλ0 := n.
(Note that theconditionλi < λi−1 is equivalent toai−1 ≤ ai .) As shown inSection 2, the
elementπi1 is a left-to-right minimum ofπ . Thus any increasing subsequence inπ which
starts withπi1 is left maximal. In particular, we haveπi1 = λi1 + 1.

Now let aj be an element ofa(π) with aj < ai1, j > i1, andai1+1, . . . , aj −1 > aj .
Since j − i > λi −λ j for i = i1, i1 +1, . . . , j −1, all the elementsλ j +1, λ j +2, . . . , λi1
occur inπi1+1πi1+2 · · · π j −1. Henceπi1 < π j .

Consequently, ifai1 > ai2 > · · · > air with i1 < i2 < · · · < i r is a sequence
such that there is no integeri with i l < i < i l+1 andail > ai ≥ ail+1 for any l , then
πi1 < πi2 < · · · < πir is an increasing subsequence ofπ which is maximal with respect
to the property thatπi1 andπir are its first and last elements,respectively. Note that the
relationsπi1 < πil where 2≤ l ≤ r imply thatπi1, . . . , πir is increasing sinceπ avoids
the pattern 132.

It is clear from the definition thathi is the maximal length of an increasing sequence
formed from dots southwest of the dot(i , πi ), beginning with the top dot southwest of
(i , πi ). Thus, if air is an element of height≥s − 1 then there exist at leasts − 1 integers
i r < j1 < j2 < · · · < js−1 with π j1 < · · · < π js−1 < πir . Sinceπ is 132-avoiding, we
even haveπ j1 < · · · < π js−1 < πi1. Choosingi1 andi r minimal and maximal, respectively,
proves the assertion.�

For any permutation π ∈ Sn(132), denote byls(π) the largest integerl suchthat π
contains the patterns(s + 1) · · · l12· · · (s − 1) wheres ≥ 2.

For example, ifπ = 8 9 5 4 6 7 2 3 10 1 we havel2(π) = l3(π) = l4(π) = 5.
By the theorem, ls(π) is equal to s − 1 plus the maximum length of a decreasing

sequence ina(π) whose smallest element is of height at leasts − 1.
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Clearly, the sequenceL(π) := (l2(π) − 1, l3(π) − 2, . . .) is a partition, that is,
ls(π) + 1 ≥ ls+1(π) for all s. Sinceπ avoids the patterns(s + 1) · · · k12· · · (s − 1) if
and only if no pattern(k + 2 − s)(k + 3 − s) · · · k12· · · (k + 1 − s) occurs inπ−1, the
partition L(π−1) is the conjugate ofL(π). (Obviously, for any permutationπ ∈ Sn the
diagram of the inverseπ−1 is just the transpose ofD(π). Hence the setSn(132) is closed
under inversion.)

Remark 4.6. Using the relation between the diagramD(π) and the Dyck pathΨK (π), it is
easy to see that the numberai is just the height at which thei th down-step ofΨK (π) ends.
(Here we only consider the down-steps before the last up-step.) The numbersbi needed for
the construction ofh(π) are (in reverse order) the starting heights of the up-steps after the
first down-step. Denoting thei th down-step inΨK (π) by di , the integerhi (π) is precisely
the difference between the maximum height of a peak to the right ofdi and the height of
the first valley followingdi . Hence in cases = 2, the theorem yields the second part of
[10, Lemma�].

We shall prove now that the number of permutations inSn which avoidboth 132 and
the patterns(s + 1) · · · k12· · · (s − 1) wherek ≥ 3 and 1≤ s ≤ k doesnot depend ons.

Proposition 4.7. Let π ∈ Sn(132), and let l be the maximum length of an increasing
subsequence ofπ . Thenπ corresponds in a one-to-one fashion to a permutationσ ∈
Sn(132) with l2(σ ) = l.

Proof. Let λ and µ be the partitions whose diagrams coincide withD(π) and D(σ ),
respectively. Givenλ = (λ1, . . . , λn−1) ∈ Yn, we define the sequenceµ̂ by

µ̂i =
{
λi + 1 if λi + i < n
0 if λi + i = n

for i = 1, . . . , n − 1, and obtain the partitionµ by sorting µ̂. (Delete all partsµ̂i = 0
with nonzeroµ̂i+1 and add the corresponding number of zeros at the end of the sequence.)
It is obvious thatµ ∈ Yn, and it is easy to see that the mapλ �→ µ is injective, and thus
a bijection onYn. To recoverλ from µ, first setλ̂i = µi − 1 for all positiveµi . Then for
eachµi = 0, let j be the largest integer for whicĥλ j + j ≥ n − 1, and redefinêλ to be the
sequence obtained by insertingn − 1 − j between̂λ j andλ̂ j +1. If thereis no such integer
j , then prependn − 1 to λ̂. Thepartition resulting from this procedure equalsλ.

Consider now the sequencēa(π) = (n − i − λi )i=1,...,n−1. (For the statement of
Theorem 4.5it suffices to consider the reduced sequencea(π) which is obtained by
omitting the final termsāi = n − i .) By Remarks 4.2(b), we havel = maxāi + 1
where 1 ≤ i ≤ n − 1. Let j1 be an integer satisfyinḡaj1 = l − 1. As mentioned in
Remark 4.6, thei th down-step ofΨK (π) lands on the level̄ai (π). In particular, l is equal
to the maximum height of a peak ofΨK (π). Therefore, it is obvious that there exist some
integersj1 < j2 < · · · < jl−1 ≤ n − 1 with ā ji = l − i for i = 1, . . . , l − 1. Clearly, the
indices j1, . . . , jl−1 can be chosen in a way thatā j (π) > 0 for all j1 ≤ j ≤ jl−1.

By the construction, the elements of the sequencea(σ ) correspond to the nonzeros
of ā(π). More exactly, we haveai (σ ) = αi − 1 + βi whereαi denotes thei th positive
element inā(π), andβi counts the number of zeros to the left ofαi . Thus the elements
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corresponding tōaj1, ā j2, . . . , ā jl−1 form a decreasing sequence of maximal length ina(σ ).
Consequently, we havel2(σ ) = (l −1)+1. (Note that the height of any elementai is always
positive dueto the definition.) �
Example 4.8. Consider the permutationπ = 5 4 6 7 2 1 3 ∈ S7(132). Its longest
increasing subsequence is of length 3. As described in the proof, we obtain the diagram
of the corresponding permutationσ = 6 5 7 3 2 1 4∈ S7(132) from D(π):

5

5

6

7

6

6

6

6

7

6

6

D ( π) D ( σ )

The length of the longest decreasing subsequence on the positive terms ofā(π) =
(2, 2, 1, 0, 1, 1) coincides with the length of the longest decreasing sequence ina(σ ) =
(1, 1, 0, 1, 1); it equals 2. Thusl2(σ ) = 3.

The following result can be derived from the corresponding generating functions which
were given for the first time by Chow and West ([4, Theorem 3.1]). Several different
analytical proofs appeared recently in [10, Theorems 2 and 6] and [13, Theorem 3.1].

Corollary 4.9. |Sn(132, 12· · ·k)| = |Sn(132, 23· · ·k1)| = |Sn(132, k12· · · (k − 1))| for
all n and k≥ 3.

Proof. The first identity is an immediate consequence of the preceding proposition.
For the second one use thatπ avoids 23· · · k1 if and only if π−1 contains no pattern
k12· · · (k − 1). �
Now we will generalize the result fromProposition 4.7for anys ≥ 2.

Proposition 4.10. Let π ∈ Sn(132), and let l ≥ s − 1 be the maximum length of an
increasing subsequence ofπ . Thenπ corresponds in a one-to-one fashion to a permutation
σ ∈ Sn(132) with ls(σ ) = l.

Proof. Forl = s−1,Corollary 4.9yields the correspondence betweenπ and a permutation
σ avoidings12· · · (s−1), that is, satisfyingls(σ ) = s−1. Thus we may assume thatl ≥ s.

The reasoning is similar to that done forProposition 4.7(we preserve the notation) but
the analysis of the bijectionλ �→ µ requires more technical effort. (Following the proof
we give a detailed example for illustrating.)

Givenλ = (λ1, . . . , λn−1) ∈ Yn, we define the sequenceµ̂ by

µ̂i =




λi + s − 1 if λi + i < n + 2 − s
0 if λi + i = n + 2 − s
1 if λi + i = n + 3 − s
...

...

s − 2 if λi + i = n
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for i = 1, . . . , n + 1 − s, andµ̂i = λi otherwise, and obtain the partitionµ from µ̂ by the
following procedure:

(1) Fori = 1, . . . , n + 1 − s, if µ̂i ≥ s − 1 then increasêµi by the number of elements
µ̂ j satisfying 1≤ j < i and 0< µ̂ j < s − 1.

(2) Fori = 1, . . . , n + 1 − s, if µ̂i < s − 1 then increasêµi by the number of elements
µ̂ j satisfyingi < j ≤ n + 2 − s and 0< µ̂ j < s − 1.

For the sakeof clearness we denote the sequence obtained now byµ̌.

(3) Arrange the elements of̌µ in decreasing order.

First we show that the mapλ �→ µ is really a bijection onYn.
Why µ ∈ Yn? Let i1 < i2 < · · · < i r ≤ n + 1 − s be the indices for which

λi + i < n + 2 − s, that is,µ̂i ≥ s − 1, and j1 < j2 < · · · < jn−1−r the remaining
ones. (Because of the assumptionl ≥ s we haver ≥ 1.) Furthermore, letc(a, b) denote
thenumber of elementŝµk ∈ {1, 2, . . . , s − 2} with a < k < b.

It is not difficult to see that botȟµik ≥ µ̌ik+1 andµ̌ jk ≥ µ̌ jk+1 for somek, andµ̌ir > µ̌ j1.
To verify the first relation, note thatλik + i k = n + 1 − s andµ̂ik+1 = 0 if i k andi k+1 are
non-consecutive integers. Thus we only have to consider the casei k+1 − i k > 2 in which
we obtain

µ̌ik+1 = λik+1 + s − 1 + c(0, i k) + c(i k, i k+1)

≤ λik+1 + s − 1 + c(0, i k) + i k+1 − i k − 2

≤ n + 1 − s + s − 1 + c(0, i k) − i k − 2

= λik + s − 1 + c(0, i k) − 2 = µ̌ik − 2

sinceλik+1 + i k+1 ≤ n + 1 − s. For the second relation, we may assume thatjk and
jk+1 are consecutive. Otherwise we haveµ̂ jk+1 = 0 as a result of̂µ jk+1−1 ≥ s − 1, and
there isnothing to show. So, letjk+1 = jk + 1 ≤ n + 1 − s. By thedefinition, we have
µ̂ j = λ j + j − (n + 2 − s) and thereforêµ jk+1 ≤ µ̂ jk + 1. In case of equality, it follows
thatc( jk, n + 3 − s) = c( jk + 1, n + 3 − s) + 1 andhenceµ̌ jk = µ̌ jk+1. If µ̂ jk+1 ≤ µ̂ jk
we haveµ̌ jk ≥ µ̌ jk+1 sincec( jk, n + 3 − s) ≥ c( jk + 1, n + 3 − s). Furthermore, the
map is defined in a way thatµ̌ j = µ̂ j = λ j ≤ s − 2 for n + 2 − s ≤ j ≤ n − 1.
If jk = n + 1 − s we haveλn+1−s ≥ 1 (otherwise we would havêµ jk = s − 1) which
yields µ̌ jk = λn+1−s − 1 + c(n + 1 − s, n + 3 − s) ≥ λn+2−s. To show the relation
µ̌ir > µ̌ j1, note thatc(i r , n + 3 − s) ≤ λir sinceλir + i r = n + 1 − s andµ̂ir +1 = 0.
Thus the assertion follows immediately fori r = j1 − 1 (which is the only possible case
satisfyingi r < j1). If j1 < i r we have

µ̌ j1 = µ̂ j1 + c( j1, i r ) + c(i r , n + 3 − s) ≤ s − 2 + c( j1, i r ) + λir

= µ̂ir + c( j1, i r ) − 1 = µ̌ir − c(0, j1 + 1) − 1.

Consequently,µk = µ̌ik for 1 ≤ k ≤ r andµk = µ̌ jk−r for r +1 ≤ k ≤ n−1. In particular,
the partitionsλ andµ coincide in the finals − 2 parts. Thereby it becomes obvious why
µ ∈ Yn. On theone hand, we haveµk + k ≤ n for all k ≤ r sinceµ̂ik is increased at most
by the number of indicesj < i k with µ̂ j ≤ s − 2. On the other hand, we obtain
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µk + k = µ̌ jk−r + jk−r + |{i > jk−r : µ̂i ≥ s − 1}|
≤ µ̌ jk−r + jk−r + n + 1 − s − jk−r − c( jk−r , n + 2 − s)

= λ jk−r + jk−r − (n + 2 − s) + c( jk−r , n + 3 − s)

+n + 1 − s − c( jk−r , n + 2 − s)

= λ jk−r + jk−r − 1 + c( jk−r , n + 3 − s) − c( jk−r , n + 2 − s)

≤ λ jk−r + jk−r ≤ n

for k = r + 1, . . . , n + 1 − s.
How does the inverse map work? The partitionλ can be recovered fromµ by the

following procedure. Here, lett be the greatest integeri for whichhi (σ ) ≥ s − 1.

(1) Let λ̂i = µi − (s − 1) for i = 1, . . . , t andλ̂i = µi for i = n + 2 − s, . . . , n − 1.
(2) Fori = n + 1 − s, n − s, . . . , t + 1, let λ̂i = µi − c wherec denotes the number of

the positive elementŝλ j satisfyingi < j ≤ n + 2 − s.

(3) Initialize λ̌ = λ̂. Fori = t+1, . . . , n+1−s, increasěλi by n+2−s−i . Furthermore,
let ci = 1 if λ̂i is a positive integer andci = 0 otherwise, and setj = i . While j > 1
and λ̌ j −1 < λ̌ j , replaceλ̌ j −1 with λ̌ j + 1 andλ̌ j with λ̌ j −1 − ci , anddecreasej
by 1. This routine yields just the partitionλ.

Finally, why we havels(σ ) = l? To answer this, we compare the sequencesā(π) and
ā(σ ) again. By the previous discussion, ther elements exceedings−2 in ā(π) correspond
to the firstr elements of̄a(σ ). More exactly, we haveāk(σ ) = āik (π) − (s − 1) + βk,
for k = 1, . . . , r whereβk counts the number of elementsā j (π) = s − 2 satisfying
j < i k. The remaining elements of̄a(σ ) can be determined bȳar+k(σ ) = ā jk(π) + βk,
for k = 1, . . . , n − 1 − r whereβk counts now the number of elementsā j (π) = s − 2
satisfying jk < j ≤ n + 2 − s. The relevant sequencea(σ ) is obtained by omitting the
termsāk = n − k. (Note that a(σ ) contains at least the firstr terms sinceµr is always
positive.) In contrast tothe cases = 2, now we have to take the heights of the elements
into consideration. The elementar (σ ) is of height at leasts−1. By Remark 4.6, weobtain
hr (σ ) as difference between the maximum height of a peak to the right of ther th down-
step ofΨK (σ ) and the height of the first valley following this step. As shown above, we
haveµr > µr+1. Thus the valley in question is of heightn − r − µr = ār (σ ). Theheight
of the peak equals max̄ai (σ ) + 1 wherer < i ≤ n − 1. From the above derivation follows
the existence of somei for which āi (σ ) − ār (σ ) ≥ s − 2. In addition, ther th element
is the last one ina(σ ) whose height is greater thans − 2. By the construction, we have
µk − µk+1 ≤ s − 2 for k > r . Thusthe original definition of the height of an element
yields immediatelyhk(σ ) ≤ s− 2 for all k > r . Consequently, the integert which appears
in the description of the inverse map is preciselyr . By reasoning similar as applied in the
cases = 2, we obtainls(σ ) = l . (The length of the longest decreasing subsequence of
(āi1(π), āi2(π), . . . , āir (π)) equalsl + 1 − s and coincides with the length of the longest
decreasing subsequence of(a1(σ ), a2(σ ), . . . , ar (σ )).) �

Example 4.11. Consider the permutationπ = 12 10 8 5 6 4 7 2 3 9 11 1∈ S12(132). Its
longest increasing subsequence contains five elements. We determine the corresponding
permutationσ for s = 4. Starting with D(π), weobtain the diagram ofσ as follows:
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For i ≤ 9, the terms of the sequenceµ̂ depend on the differencesλi + i − 10. In case of
a negative difference, we increaseλi by 3, otherwisêµi is just defined to be the difference.
(In the array, the first ones are the light grey parts.) The final two terms ofλ and µ̂

coincide by the definition. The procedure makes changes toµ̂1, . . . , µ̂9 as follows. Step
one increases each light grey part by the number of (positive) dark grey parts above it (in
this example, at each case by two) while step two increases each termµ̂i being at most 2
by the number of (positive) dark grey parts below it. (Note thatµ̂10 is counted in if it is
positive.) Inthis way, we obtaiňµ, andby sorting the parts in decreasing order, finally, the
partition µ.

This construction associates the terms ofā(π) = (0, 1, 2, 4, 3, 3, 2, 3, 2, 1, 0) which
are greater than 2 with the elements ofa(σ ) = (2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 0) being of
height at least 3 or having an element of height at least 3 to their right. (We have
h(σ ) = (4, 4, 4, 3, 2, 1, 1, 1, 1, 1, 1).) The length of the longest decreasing subsequence
is the same for these two (underlined) subsequences; it equals 2. ByTheorem 4.5, we have
l4(σ ) = 3 + 2 = 5.

To complete the picture, we illustrate the working of the inverse map, applied to the
partition µ = (9, 9, 8, 6, 4, 2, 1, 1, 1, 1, 1). The maximum index of an element̄ai (σ ) of
height at least 3 ist = 4. The first two procedure steps generate the sequenceλ̂:

(6, 6, 5, 3 | ∗, ∗, ∗, ∗, ∗ | 1, 1) → (6, 6, 5, 3 | ∗, ∗, ∗, ∗, 0 | 1, 1)

→ (6, 6, 5, 3 | ∗, ∗, ∗, 0, 0 | 1, 1)

→ (6, 6, 5, 3 | ∗, ∗, 0, 0, 0 | 1, 1)

→ (6, 6, 5, 3 | 1, 0, 0, 0 | 1, 1)

→ (6, 6, 5, 3 | 2, 1, 0, 0, 0 | 1, 1).

(The bars mark the intervals[1, t], [t + 1, n + 1 − s], and[n + 2 − s, n − 1].) Now for
i = 5, . . . , 9, increasêλi by 10− i , and exchange the term with the previous one while as
the firsti elements of the sequence are in decreasing order. Any element putting to the left
is increased by 1, any element putting to the right is decreased by 1 ifλ̂i is a non-zero.

i = 5 : (c5 = 1)

(6, 6, 5, 3, 7, 1, 0, 0, 0, 1, 1) → (6, 6, 5, 8, 2, 1, 0, 0, 0, 1, 1)

→ (6, 6, 9, 4, 2, 1, 0, 0, 0, 1, 1)

→ (6, 10, 5, 4, 2, 1, 0, 0, 0, 1, 1)

→ (11, 5, 5, 4, 2, 1, 0, 0, 0, 1, 1)
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i = 6 : (c6 = 1)

(11, 5, 5, 4, 2, 5, 0, 0, 0, 1, 1) → (11, 5, 5, 4, 6, 1, 0, 0, 0, 1, 1)

→ (11, 5, 5, 7, 3, 1, 0, 0, 0, 1, 1)

→ (11, 5, 8, 4, 3, 1, 0, 0, 0, 1, 1)

→ (11, 9, 4, 4, 3, 1, 0, 0, 0, 1, 1)

i = 7 : (c7 = 0)

(11, 9, 4, 4, 3, 1, 3, 0, 0, 1, 1) → (11, 9, 4, 4, 3, 4, 1, 0, 0, 1, 1)

→ (11, 9, 4, 4, 5, 3, 1, 0, 0, 1, 1)

→ (11, 9, 4, 6, 4, 3, 1, 0, 0, 1, 1)

→ (11, 9, 7, 4, 4, 3, 1, 0, 0, 1, 1)

i = 8 : (c8 = 0)

(11, 9, 7, 4, 4, 3, 1, 2, 0, 1, 1) → (11, 9, 7, 4, 4, 3, 3, 1, 0, 1, 1)

i = 9 : (c9 = 0)

(11, 9, 7, 4, 4, 3, 3, 1, 1, 1, 1)

In this way we obtain the partition(11, 9, 7, 4, 4, 3, 3, 1, 1, 1, 1) which is just equal toλ.

Proposition 4.10yields immediately the following result that was proved in an
analytical way by Mansour and Vainshtein [14, Theorem 2.4].

Corollary 4.12. |Sn(132, 12· · ·k)| = |Sn(132, s(s+ 1) · · · k12· · · (s − 1))| for all n and
k ≥ 3 and2 ≤ s ≤ k.

5. A final note

As shown in Section 2, the permutation diagram indicates whether or not the
permutation contains the pattern 132. If so, we even obtain the exact number of
occurrences.

In [9], Fulton defined the following rank function on the essential set. Given a corner
(i , j ) of the diagramD(π), i.e. (i , j ) ∈ E(π), its rank is defined to be the number of dots
northwest of it and is denoted byρ(i , j ).

It is clear from the construction that the number of dots in the northwest is the same for
all diagram squares which are connected. Hence we can extend the rank function onD(π).
The information about the number of sequencesof type 132 contained in a permutation is
encoded by the ranks of its diagram squares.

Theorem 5.1. Letπ ∈ Sn be a permutation, and let D(π) be its diagram. Then the number
of occurrences of the pattern132in π is equal to∑

(i, j )∈D(π)

ρ(i , j ).
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Proof. It is easy to see that each square(i , j ) of D(π) corresponds to exactlyρ(i , j )
subsequences of type 132 inπ , namely the sequencesk πi j wherek ranges over all
column indices of dots northwest of(i , j ):

�
Remark 5.2. As mentioned above, we have|D(π)| = inv(π) for all π ∈ Sn. Hence the
non-weighted sum

∑
(i, j )∈D(π) 1 counts the number of occurrences of the pattern 21 inπ .

Example 5.3. The ranked diagram ofπ = 4 2 8 3 6 9 7 5 1 10∈ S10 is

Thusπ contains 20 subsequences of type 132 and 18 inversions.

The first enumerative result concerning permutations that contain a given positive
numberr of occurrences of the pattern 132 was given by B´ona [2]. He showed that there
are

(2n−3
n−3

)
permutations inSn which contain 132 exactly once. (ByTheorem 5.1, these

permutations are characterized to be such ones having exactly one diagram square of rank
1 andonly rank 0 squares otherwise.) In [15], Mansour and Vainshtein determined the
generating function for the number of permutations inSn having exactlyr occurrences of
pattern 132 for allr ≥ 0.
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