808 research outputs found

    A unified analysis of Algebraic Flux Correction schemes for convection-diffusion equations

    Get PDF
    Recent results on the numerical analysis of Algebraic Flux Correction (AFC) finite element schemes for scalar convection-diffusion equations are reviewed and presented in a unified way. A general form of the method is presented using a link between AFC schemes and nonlinear edge-based diffusion scheme. Then, specific versions of the method, this is, different definitions for the flux limiters, are reviewed and their main results stated. Numerical studies compare the different versions of the scheme

    Maximum principle preserving high order schemes for convection-dominated diffusion equations

    Get PDF
    The maximum principle is an important property of solutions to PDE. Correspondingly, it\u27s of great interest for people to design a high order numerical scheme solving PDE with this property maintained. In this thesis, our particular interest is solving convection-dominated diffusion equation. We first review a nonconventional maximum principle preserving(MPP) high order finite volume(FV) WENO scheme, and then propose a new parametrized MPP high order finite difference(FD) WENO framework, which is generalized from the one solving hyperbolic conservation laws. A formal analysis is presented to show that a third order finite difference scheme with this parametrized MPP flux limiters maintains the third order accuracy without extra CFL constraint when the low order monotone flux is chosen appropriately. Numerical tests in both one and two dimensional cases are performed on the simulation of the incompressible Navier-Stokes equations in vorticity stream-function formulation and several other problems to show the effectiveness of the proposed method

    A bounded upwinding scheme for computing convection-dominated transport problems

    Get PDF
    A practical high resolution upwind differencing scheme for the numerical solution of convection-dominated transport problems is presented. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite difference methodology. The performance of the scheme is investigated by solving the 1D/2D scalar advection equations, 1D inviscid Burgers’ equation, 1D scalar convection–diffusion equation, 1D/2D compressible Euler’s equations, and 2D incompressible Navier–Stokes equations. The numerical results displayed good agreement with other existing numerical and experimental data

    Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    Get PDF
    This work extends the flux-corrected transport (FCT) methodology to arbitrary-order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) a high order stabilization operator based on gradient recovery, and (iii) new localized limiting techniques for antidi usive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D

    Analysis of algebraic flux correction schemes

    Get PDF
    A family of algebraic flux correction schemes for linear boundary value problems in any space dimension is studied. These methods’ main feature is that they limit the fluxes along each one of the edges of the triangulation, and we suppose that the limiters used are symmetric. For an abstract problem, the existence of a solution, existence and uniqueness of the solution of a linearized problem, and an a priori error estimate, are proved under rather general assumptions on the limiters. For a particular (but standard in practice) choice of the limiters, it is shown that a local discrete maximum principle holds. The theory developed for the abstract problem is applied to convection–diffusion–reaction equations, where in particular an error estimate is derived. Numerical studies show its sharpness
    corecore