1,887 research outputs found

    On the cycle index and the weight enumerator II

    Full text link
    In the previous paper, the second and third named author introduced the concept of the complete cycle index and discussed a relation with the complete weight enumerator in coding theory. In the present paper, we introduce the concept of the complete joint cycle index and the average complete joint cycle index, and discuss a relation with the complete joint weight enumerator and the average complete joint weight enumerator respectively in coding theory. Moreover, the notion of the average intersection numbers is given, and we discuss a relation with the average intersection numbers in coding theory.Comment: 24 page

    On THE AVERAGE JOINT CYCLE INDEX AND THE AVERAGE JOINT WEIGHT ENUMERATOR (Research on finite groups, algebraic combinatorics, and vertex algebras)

    Get PDF
    In this paper, we introduce the concept of the complete joint cycle index and the average complete joint cycle index, and discuss a relation with the complete joint weight enumerator and the average complete joint weight enumerator respectively in coding theory

    Geometric representations of linear codes

    Full text link
    We say that a linear code C over a field F is triangular representable if there exists a two dimensional simplicial complex Δ\Delta such that C is a punctured code of the kernel ker Δ\Delta of the incidence matrix of Δ\Delta over F and there is a linear mapping between C and ker Δ\Delta which is a bijection and maps minimal codewords to minimal codewords. We show that the linear codes over rationals and over GF(p), where p is a prime, are triangular representable. In the case of finite fields, we show that this representation determines the weight enumerator of C. We present one application of this result to the partition function of the Potts model. On the other hand, we show that there exist linear codes over any field different from rationals and GF(p), p prime, that are not triangular representable. We show that every construction of triangular representation fails on a very weak condition that a linear code and its triangular representation have to have the same dimension.Comment: 20 pages, 8 figures, v3 major change

    Some new results on the self-dual [120,60,24] code

    Full text link
    The existence of an extremal self-dual binary linear code of length 120 is a long-standing open problem. We continue the investigation of its automorphism group, proving that automorphisms of order 30 and 57 cannot occur. Supposing the involutions acting fixed point freely, we show that also automorphisms of order 8 cannot occur and the automorphism group is of order at most 120, with further restrictions. Finally, we present some necessary conditions for the existence of the code, based on shadow and design theory.Comment: 23 pages, 6 tables, to appear in Finite Fields and Their Application

    Explicit Constructions of Quasi-Uniform Codes from Groups

    Full text link
    We address the question of constructing explicitly quasi-uniform codes from groups. We determine the size of the codebook, the alphabet and the minimum distance as a function of the corresponding group, both for abelian and some nonabelian groups. Potentials applications comprise the design of almost affine codes and non-linear network codes

    On the Exact Evaluation of Certain Instances of the Potts Partition Function by Quantum Computers

    Get PDF
    We present an efficient quantum algorithm for the exact evaluation of either the fully ferromagnetic or anti-ferromagnetic q-state Potts partition function Z for a family of graphs related to irreducible cyclic codes. This problem is related to the evaluation of the Jones and Tutte polynomials. We consider the connection between the weight enumerator polynomial from coding theory and Z and exploit the fact that there exists a quantum algorithm for efficiently estimating Gauss sums in order to obtain the weight enumerator for a certain class of linear codes. In this way we demonstrate that for a certain class of sparse graphs, which we call Irreducible Cyclic Cocycle Code (ICCC_\epsilon) graphs, quantum computers provide a polynomial speed up in the difference between the number of edges and vertices of the graph, and an exponential speed up in q, over the best classical algorithms known to date

    Iterative min-sum decoding of tail-biting codes

    Get PDF
    By invoking a form of the Perron-Frobenius theorem for the “min-sum” semi-ring, we obtain a union bound on the performance of iterative decoding of tail-biting codes. This bound shows that for the Gaussian channel, iterative decoding will be optimum, at least for high SNRs, if and only if the minimum “pseudo-distance” of the code is larger than the ordinary minimum distance

    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View

    Full text link
    These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on `Complex Systems' in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as `large graphical models'. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field.Comment: Lectures at Les Houches Summer School on `Complex Systems', July 2006, 44 pages, 25 ps figure
    corecore