78 research outputs found

    Interior points of the completely positive cone.

    Get PDF
    A matrix A is called completely positive if it can be decomposed as A = BB^T with an entrywise nonnegative matrix B. The set of all such matrices is a convex cone. We provide a characterization of the interior of this cone as well as of its dual

    An algorithm for determining copositive matrices

    Get PDF
    In this paper, we present an algorithm of simple exponential growth called COPOMATRIX for determining the copositivity of a real symmetric matrix. The core of this algorithm is a decomposition theorem, which is used to deal with simplicial subdivision of T^āˆ’={yāˆˆĪ”māˆ£Ī²Tyā‰¤0}\hat{T}^{-}=\{y\in \Delta_{m}| \beta^Ty\leq 0\} on the standard simplex Ī”m\Delta_m, where each component of the vector Ī²\beta is -1, 0 or 1.Comment: 15 page

    The necessary and sufficient conditions of copositive tensors

    Full text link
    In this paper, it is proved that (strict) copositivity of a symmetric tensor A\mathcal{A} is equivalent to the fact that every principal sub-tensor of A\mathcal{A} has no a (non-positive) negative H++H^{++}-eigenvalue. The necessary and sufficient conditions are also given in terms of the Z++Z^{++}-eigenvalue of the principal sub-tensor of the given tensor. This presents a method of testing (strict) copositivity of a symmetric tensor by means of the lower dimensional tensors. Also the equivalent definition of strictly copositive tensors is given on entire space Rn\mathbb{R}^n.Comment: 13 pages. arXiv admin note: text overlap with arXiv:1302.608

    Interiors of completely positive cones

    Full text link
    A symmetric matrix AA is completely positive (CP) if there exists an entrywise nonnegative matrix BB such that A=BBTA = BB^T. We characterize the interior of the CP cone. A semidefinite algorithm is proposed for checking interiors of the CP cone, and its properties are studied. A CP-decomposition of a matrix in Dickinson's form can be obtained if it is an interior of the CP cone. Some computational experiments are also presented

    On the connection of facially exposed and nice cones

    Get PDF
    A closed convex cone K is called nice, if the set K^* + F^\perp is closed for all F faces of K, where K^* is the dual cone of K, and F^\perp is the orthogonal complement of the linear span of F. The niceness property is important for two reasons: it plays a role in the facial reduction algorithm of Borwein and Wolkowicz, and the question whether the linear image of a nice cone is closed also has a simple answer. We prove several characterizations of nice cones and show a strong connection with facial exposedness. We prove that a nice cone must be facially exposed; in reverse, facial exposedness with an added condition implies niceness. We conjecture that nice, and facially exposed cones are actually the same, and give supporting evidence
    • ā€¦
    corecore