8,545 research outputs found

    Certificate Transparency with Enhancements and Short Proofs

    Full text link
    Browsers can detect malicious websites that are provisioned with forged or fake TLS/SSL certificates. However, they are not so good at detecting malicious websites if they are provisioned with mistakenly issued certificates or certificates that have been issued by a compromised certificate authority. Google proposed certificate transparency which is an open framework to monitor and audit certificates in real time. Thereafter, a few other certificate transparency schemes have been proposed which can even handle revocation. All currently known constructions use Merkle hash trees and have proof size logarithmic in the number of certificates/domain owners. We present a new certificate transparency scheme with short (constant size) proofs. Our construction makes use of dynamic bilinear-map accumulators. The scheme has many desirable properties like efficient revocation, low verification cost and update costs comparable to the existing schemes. We provide proofs of security and evaluate the performance of our scheme.Comment: A preliminary version of the paper was published in ACISP 201

    Certificate Transparency with Enhancements and Short Proofs

    Full text link
    Browsers can detect malicious websites that are provisioned with forged or fake TLS/SSL certificates. However, they are not so good at detecting malicious websites if they are provisioned with mistakenly issued certificates or certificates that have been issued by a compromised certificate authority. Google proposed certificate transparency which is an open framework to monitor and audit certificates in real time. Thereafter, a few other certificate transparency schemes have been proposed which can even handle revocation. All currently known constructions use Merkle hash trees and have proof size logarithmic in the number of certificates/domain owners. We present a new certificate transparency scheme with short (constant size) proofs. Our construction makes use of dynamic bilinear-map accumulators. The scheme has many desirable properties like efficient revocation, low verification cost and update costs comparable to the existing schemes. We provide proofs of security and evaluate the performance of our scheme.Comment: A preliminary version of the paper was published in ACISP 201

    Local Optimality Certificates for LP Decoding of Tanner Codes

    Full text link
    We present a new combinatorial characterization for local optimality of a codeword in an irregular Tanner code. The main novelty in this characterization is that it is based on a linear combination of subtrees in the computation trees. These subtrees may have any degree in the local code nodes and may have any height (even greater than the girth). We expect this new characterization to lead to improvements in bounds for successful decoding. We prove that local optimality in this new characterization implies ML-optimality and LP-optimality, as one would expect. Finally, we show that is possible to compute efficiently a certificate for the local optimality of a codeword given an LLR vector

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method
    corecore