22 research outputs found

    The Power of Linear Programming for Valued CSPs

    Full text link
    A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation. Using this result, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: Corrected a few typo

    The power of linear programming for general-valued CSPs

    Full text link
    Let DD, called the domain, be a fixed finite set and let Γ\Gamma, called the valued constraint language, be a fixed set of functions of the form f:DmQ{}f:D^m\to\mathbb{Q}\cup\{\infty\}, where different functions might have different arity mm. We study the valued constraint satisfaction problem parametrised by Γ\Gamma, denoted by VCSP(Γ)(\Gamma). These are minimisation problems given by nn variables and the objective function given by a sum of functions from Γ\Gamma, each depending on a subset of the nn variables. Finite-valued constraint languages contain functions that take on only rational values and not infinite values. Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation (BLP). For a valued constraint language Γ\Gamma, BLP is a decision procedure for Γ\Gamma if and only if Γ\Gamma admits a symmetric fractional polymorphism of every arity. For a finite-valued constraint language Γ\Gamma, BLP is a decision procedure if and only if Γ\Gamma admits a symmetric fractional polymorphism of some arity, or equivalently, if Γ\Gamma admits a symmetric fractional polymorphism of arity 2. Using these results, we obtain tractability of several novel classes of problems, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) kk-submodular on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: A full version of a FOCS'12 paper by the last two authors (arXiv:1204.1079) and an ICALP'13 paper by the first author (arXiv:1207.7213) to appear in SIAM Journal on Computing (SICOMP

    Discrete Convex Functions on Graphs and Their Algorithmic Applications

    Full text link
    The present article is an exposition of a theory of discrete convex functions on certain graph structures, developed by the author in recent years. This theory is a spin-off of discrete convex analysis by Murota, and is motivated by combinatorial dualities in multiflow problems and the complexity classification of facility location problems on graphs. We outline the theory and algorithmic applications in combinatorial optimization problems

    A Min-Max . . . Functions and Its Implications

    Get PDF
    A. Huber and V. Kolmogorov (ISCO 2012) introduced a concept of k-submodular function as a generalization of ordinary submodular (set) functions and bisubmodular functions and obtained a min-max theorem for minimization of k-submodular functions. Also F. Kuivinen (2011) considered submodular functions on (product lattices of) diamonds and showed a min-max theorem for minimization of submodular functions on diamonds. In the present paper we consider a common generalization of k-submodular functions and submodular functions on diamonds, which we call a transversal submodular function (or a t-submodular function, for short). We show a min-max theorem for minimization of t-submodular functions in terms of a new norm composed of ℓ1 and ℓ ∞ norms. This reveals a relationship between the obtained min-max theorem and that for minimization of ordinary submodular set functions due to J. Edmonds (1970). We also show how our min-max theorem for t-submodular functions can be used to prove the min-max theorem for k-submodular functions by Huber and Kolmogorov and that for submodular functions on diamonds by Kuivinen. Moreover, we show a counterexample to a characterization, given by Huber and Kolmogorov (ISCO 2012), of extreme points of the k-submodular polyhedron and make it a correct one by fixing a flaw therein

    Minimizing Submodular Functions on Diamonds via Generalized Fractional Matroid Matchings

    Get PDF
    In this paper we show the first polynomial-time algorithm for the problem of minimizing submodular functions on the product of diamonds. This submodular function minimization problem is reduced to the membership problem for an associated polyhedron, which is equivalent to the optimization problem over the polyhedron, based on the ellipsoid method. The latter optimization problem is solved by polynomial number of solutions of subproblems, each being a generalization of the weighted fractional matroid matching problem. We give a combinatorial polynomial-time algorithm for this optimization problem by extending the result by Gijswijt and Pap [D.~Gijswijt and G.~Pap, An algorithm for weighted fractional matroid matching, J.\ Combin.\ Theory, Ser.~B 103 (2013), 509--520]

    09441 Abstracts Collection -- The Constraint Satisfaction Problem: Complexity and Approximability

    Get PDF
    From 25th to 30th October 2009, the Dagstuhl Seminar 09441 ``The Constraint Satisfaction Problem: Complexity and Approximability\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore