12,194 research outputs found

    On the complexity of skew arithmetic

    No full text
    13 pagesIn this paper, we study the complexity of several basic operations on linear differential operators with polynomial coefficients. As in the case of ordinary polynomials, we show that these complexities can be expressed in terms of the cost of multiplication

    Symmetric Determinantal Representation of Formulas and Weakly Skew Circuits

    Get PDF
    We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of for00504925mulas and weakly skew circuits. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of B\"urgisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.Comment: To appear in the AMS Contemporary Mathematics volume on Randomization, Relaxation, and Complexity in Polynomial Equation Solving, edited by Gurvits, Pebay, Rojas and Thompso

    On the expressive power of planar perfect matching and permanents of bounded treewidth matrices

    Get PDF
    Valiant introduced some 25 years ago an algebraic model of computation along with the complexity classes VP and VNP, which can be viewed as analogues of the classical classes P and NP. They are defined using non-uniform sequences of arithmetic circuits and provides a framework to study the complexity for sequences of polynomials. Prominent examples of difficult (that is, VNP-complete) problems in this model includes the permanent and hamiltonian polynomials. While the permanent and hamiltonian polynomials in general are difficult to evaluate, there have been research on which special cases of these polynomials admits efficient evaluation. For instance, Barvinok has shown that if the underlying matrix has bounded rank, both the permanent and the hamiltonian polynomials can be evaluated in polynomial time, and thus are in VP. Courcelle, Makowsky and Rotics have shown that for matrices of bounded treewidth several difficult problems (including evaluating the permanent and hamiltonian polynomials) can be solved efficiently. An earlier result of this flavour is Kasteleyn's theorem which states that the sum of weights of perfect matchings of a planar graph can be computed in polynomial time, and thus is in VP also. For general graphs this problem is VNP-complete. In this paper we investigate the expressive power of the above results. We show that the permanent and hamiltonian polynomials for matrices of bounded treewidth both are equivalent to arithmetic formulas. Also, arithmetic weakly skew circuits are shown to be equivalent to the sum of weights of perfect matchings of planar graphs.Comment: 14 page

    Arithmetic circuits: the chasm at depth four gets wider

    Get PDF
    In their paper on the "chasm at depth four", Agrawal and Vinay have shown that polynomials in m variables of degree O(m) which admit arithmetic circuits of size 2^o(m) also admit arithmetic circuits of depth four and size 2^o(m). This theorem shows that for problems such as arithmetic circuit lower bounds or black-box derandomization of identity testing, the case of depth four circuits is in a certain sense the general case. In this paper we show that smaller depth four circuits can be obtained if we start from polynomial size arithmetic circuits. For instance, we show that if the permanent of n*n matrices has circuits of size polynomial in n, then it also has depth 4 circuits of size n^O(sqrt(n)*log(n)). Our depth four circuits use integer constants of polynomial size. These results have potential applications to lower bounds and deterministic identity testing, in particular for sums of products of sparse univariate polynomials. We also give an application to boolean circuit complexity, and a simple (but suboptimal) reduction to polylogarithmic depth for arithmetic circuits of polynomial size and polynomially bounded degree

    Subtraction-free complexity, cluster transformations, and spanning trees

    No full text

    Evaluating Matrix Circuits

    Full text link
    The circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups is studied. The best upper bound for this problem is coRP\mathsf{coRP}, which is shown by a reduction to polynomial identity testing. Conversely, the compressed word problem for the linear group SL3(Z)\mathsf{SL}_3(\mathbb{Z}) is equivalent to polynomial identity testing. In the paper, it is shown that the compressed word problem for every finitely generated nilpotent group is in DET⊆NC2\mathsf{DET} \subseteq \mathsf{NC}^2. Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits

    On Computing Multilinear Polynomials Using Multi-r-ic Depth Four Circuits

    Get PDF
    International audienceIn this paper, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which polynomial computed at every node has a bound on the individual degree of r (referred to as multi-r-ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better and better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing a multilinear polynomial on n^O(1) variables and degree d = o(n), must have size at least (n/r^1.1)^{\sqrt{d/r}} when r is o(d) and is strictly less than n^1/1.1. This bound however deteriorates with increasing r. It is a natural question to ask if we can prove a bound that does not deteriorate with increasing r or a bound that holds for a larger regime of r. We here prove a lower bound which does not deteriorate with r , however for a specific instance of d = d (n) but for a wider range of r. Formally, we show that there exists an explicit polynomial on n^{O(1)} variables and degree Θ(log^2(n)) such that any depth four circuit of bounded individual degree r < n^0.2 must have size at least exp(Ω (log^2 n)). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017)

    Sparse multivariate polynomial interpolation in the basis of Schubert polynomials

    Full text link
    Schubert polynomials were discovered by A. Lascoux and M. Sch\"utzenberger in the study of cohomology rings of flag manifolds in 1980's. These polynomials generalize Schur polynomials, and form a linear basis of multivariate polynomials. In 2003, Lenart and Sottile introduced skew Schubert polynomials, which generalize skew Schur polynomials, and expand in the Schubert basis with the generalized Littlewood-Richardson coefficients. In this paper we initiate the study of these two families of polynomials from the perspective of computational complexity theory. We first observe that skew Schubert polynomials, and therefore Schubert polynomials, are in \CountP (when evaluating on non-negative integral inputs) and \VNP. Our main result is a deterministic algorithm that computes the expansion of a polynomial ff of degree dd in Z[x1,…,xn]\Z[x_1, \dots, x_n] in the basis of Schubert polynomials, assuming an oracle computing Schubert polynomials. This algorithm runs in time polynomial in nn, dd, and the bit size of the expansion. This generalizes, and derandomizes, the sparse interpolation algorithm of symmetric polynomials in the Schur basis by Barvinok and Fomin (Advances in Applied Mathematics, 18(3):271--285). In fact, our interpolation algorithm is general enough to accommodate any linear basis satisfying certain natural properties. Applications of the above results include a new algorithm that computes the generalized Littlewood-Richardson coefficients.Comment: 20 pages; some typos correcte
    • …
    corecore