110 research outputs found

    The Complexity of Rerouting Shortest Paths

    Get PDF
    The Shortest Path Reconfiguration problem has as input a graph G (with unit edge lengths) with vertices s and t, and two shortest st-paths P and Q. The question is whether there exists a sequence of shortest st-paths that starts with P and ends with Q, such that subsequent paths differ in only one vertex. This is called a rerouting sequence. This problem is shown to be PSPACE-complete. For claw-free graphs and chordal graphs, it is shown that the problem can be solved in polynomial time, and that shortest rerouting sequences have linear length. For these classes, it is also shown that deciding whether a rerouting sequence exists between all pairs of shortest st-paths can be done in polynomial time. Finally, a polynomial time algorithm for counting the number of isolated paths is given.Comment: The results on claw-free graphs, chordal graphs and isolated paths have been added in version 2 (april 2012). Version 1 (September 2010) only contained the PSPACE-hardness result. (Version 2 has been submitted.

    The kk-Dominating Graph

    Get PDF
    Given a graph GG, the kk-dominating graph of GG, Dk(G)D_k(G), is defined to be the graph whose vertices correspond to the dominating sets of GG that have cardinality at most kk. Two vertices in Dk(G)D_k(G) are adjacent if and only if the corresponding dominating sets of GG differ by either adding or deleting a single vertex. The graph Dk(G)D_k(G) aids in studying the reconfiguration problem for dominating sets. In particular, one dominating set can be reconfigured to another by a sequence of single vertex additions and deletions, such that the intermediate set of vertices at each step is a dominating set if and only if they are in the same connected component of Dk(G)D_k(G). In this paper we give conditions that ensure Dk(G)D_k(G) is connected.Comment: 2 figure, The final publication is available at http://link.springer.co

    Reconfiguring Independent Sets in Claw-Free Graphs

    Get PDF
    We present a polynomial-time algorithm that, given two independent sets in a claw-free graph GG, decides whether one can be transformed into the other by a sequence of elementary steps. Each elementary step is to remove a vertex vv from the current independent set SS and to add a new vertex ww (not in SS) such that the result is again an independent set. We also consider the more restricted model where vv and ww have to be adjacent

    Recoloring bounded treewidth graphs

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic, a problem left open in Bonamy et al. (2012). Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring.Comment: 11 pages, 5 figure

    Recoloring graphs via tree decompositions

    Full text link
    Let kk be an integer. Two vertex kk-colorings of a graph are \emph{adjacent} if they differ on exactly one vertex. A graph is \emph{kk-mixing} if any proper kk-coloring can be transformed into any other through a sequence of adjacent proper kk-colorings. Jerrum proved that any graph is kk-mixing if kk is at least the maximum degree plus two. We first improve Jerrum's bound using the grundy number, which is the worst number of colors in a greedy coloring. Any graph is (tw+2)(tw+2)-mixing, where twtw is the treewidth of the graph (Cereceda 2006). We prove that the shortest sequence between any two (tw+2)(tw+2)-colorings is at most quadratic (which is optimal up to a constant factor), a problem left open in Bonamy et al. (2012). We also prove that given any two (χ(G)+1)(\chi(G)+1)-colorings of a cograph (resp. distance-hereditary graph) GG, we can find a linear (resp. quadratic) sequence between them. In both cases, the bounds cannot be improved by more than a constant factor for a fixed χ(G)\chi(G). The graph classes are also optimal in some sense: one of the smallest interesting superclass of distance-hereditary graphs corresponds to comparability graphs, for which no such property holds (even when relaxing the constraint on the length of the sequence). As for cographs, they are equivalently the graphs with no induced P4P_4, and there exist P5P_5-free graphs that admit no sequence between two of their (χ(G)+1)(\chi(G)+1)-colorings. All the proofs are constructivist and lead to polynomial-time recoloring algorithmComment: 20 pages, 8 figures, partial results already presented in http://arxiv.org/abs/1302.348

    Fixed-Parameter Tractability of Token Jumping on Planar Graphs

    Full text link
    Suppose that we are given two independent sets I0I_0 and IrI_r of a graph such that ∣I0∣=∣Ir∣|I_0| = |I_r|, and imagine that a token is placed on each vertex in I0I_0. The token jumping problem is to determine whether there exists a sequence of independent sets which transforms I0I_0 into IrI_r so that each independent set in the sequence results from the previous one by moving exactly one token to another vertex. This problem is known to be PSPACE-complete even for planar graphs of maximum degree three, and W[1]-hard for general graphs when parameterized by the number of tokens. In this paper, we present a fixed-parameter algorithm for the token jumping problem on planar graphs, where the parameter is only the number of tokens. Furthermore, the algorithm can be modified so that it finds a shortest sequence for a yes-instance. The same scheme of the algorithms can be applied to a wider class of graphs, K3,tK_{3,t}-free graphs for any fixed integer t≥3t \ge 3, and it yields fixed-parameter algorithms
    • …
    corecore