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THE k-DOMINATING GRAPH

RUTH HAAS AND K. SEYFFARTH

Abstract. Given a graphG, the k-dominating graph ofG, Dk(G),
is defined to be the graph whose vertices correspond to the domi-
nating sets of G that have cardinality at most k. Two vertices in
Dk(G) are adjacent if and only if the corresponding dominating
sets of G differ by either adding or deleting a single vertex. The
graph Dk(G) aids in studying the reconfiguration problem for dom-
inating sets. In particular, one dominating set can be reconfigured
to another by a sequence of single vertex additions and deletions,
such that the intermediate set of vertices at each step is a domi-
nating set if and only if they are in the same connected component
of Dk(G). In this paper we give conditions that ensure Dk(G) is
connected.

1. Introduction

Let G be a graph and S ⊆ V (G). Then S is a dominating set of G
if and only if every vertex in V (G)\S is adjacent to a vertex in S. The
domination number of G, denoted γ(G), is the minimum cardinality of
a dominating set of G. The upper domination number of G, denoted
Γ(G), is the maximum cardinality of a minimal dominating set of G.
We use the term γ-set to refer to a dominating set of cardinality γ(G),
and Γ-set to refer to a minimal dominating set of cardinality Γ(G).
There is a wealth of literature about domination and variations (see,
for example [9]). It is easy to construct minimal dominating sets using a
greedy approach, but determining γ(G) is NP-complete in general. Our
interest here is in relationships between dominating sets. In particular,
given dominating sets S and T , is there a sequence of dominating sets
S0 = S1, S2, . . . Sk = T such that each Si+1 is obtained from Si by
deleting or adding a single vertex.

This work is similar in flavour to recent work in graph colouring.
Given a graph H and a positive integer k, the k-colouring graph of H,
denoted Gk(H), has vertices corresponding to the (proper) k-vertex-
colourings of H. Two vertices in Gk(H) are adjacent if and only if
the corresponding vertex colourings of G differ on precisely one ver-
tex. The connectedness of k-colouring graphs has been studied, as has
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2 RUTH HAAS AND K. SEYFFARTH

the hamiltonicity (see, for example [4, 5, 6, 8]). When Gk(H) is con-
nected, then a Markov process can be defined on it that leads to an
approximation for the number of k–colourings of H.

A reconfiguration problem asks whether (when) one feasible solution
to a problem can be transformed into another by some allowable set of
moves, while maintaining feasibility at all steps. The complexity of re-
configuration of various colouring problems in graphs has been studied
in a variety of papers including [2, 4, 5, 10]. For many graph prob-
lems, such as independent sets and vertex covers, determining whether
one feasible solution can be reconfigured to another is hard for general
graphs as is shown in [11]. In this paper we show that for bipartite and
chordal graphs any minimal dominating set can be reconfigured to any
other.

Let G be a graph, and k ≥ γ(G) an integer. We define the k-
dominating graph of G, Dk(G), to be the graph whose vertices corre-
spond to the dominating sets of G that have cardinality at most k. Two
vertices in Dk(G) are adjacent if and only if the corresponding domi-
nating sets of G differ by either adding or deleting a single vertex, i.e., if
A and B are dominating sets of G, then AB is an edge of Dk(G) if and
only if there exists a vertex u ∈ V (G) so that (A\B) ∪ (B\A) = {u}.
The graph Dk(G) is a subgraph of the Hasse Diagram of all subsets of
V (G) of cardinality k or less. The Hasse Diagram itself is Dn(Kn).

Two different graphs defined on dominating sets have recently been
studied in [7, 14]. In both these papers, the γ-graph of G, denoted
γ[G], has vertices corresponding to the dominating sets of cardinality
γ(G), but the edge sets are defined differently. In [14] there is an edge
between two such sets S and T if and only if S is obtained from T by
exchanging any one vertex for another, while in [7] there is an edge be-
tween two sets S and T only if the swapped vertices are adjacent in the
original graph. In this paper, instead of exchanging vertices, we permit
individual additions and deletions, allowing dominating sets of varying
sizes, and edges only between dominating sets whose cardinalities differ
by ±1. In the last section of this paper we describe the relationship
among Dk(G), G[γ] as defined in [14], and another related graph.

A natural first problem is to determine conditions that ensure that
Dk(G) is connected. In particular, is there a smallest value, d0(G),
such that Dk(G) is connected for all k ≥ d0(G)? Notice that the con-
nectedness of Dk(G) does not guarantee the connectedness of Dk+1(G).
For example, consider K1,n, the star on n ≥ 3 vertices. Figure 1 shows
D3(K1,3), where vertices are represented by copies ofK1,3, and the dom-
inating sets are indicated by the solid circles. The unique Γ(K1,n−1) set
is an isolated vertex in DΓ(K1,n−1), so DΓ(K1,n−1) = Dn−1(K1,n−1) is



THE k-DOMINATING GRAPH 3

Figure 1. D3(K1,3).

not connected. However, Dj(K1,n−1) is connected for each j, 1 ≤ j ≤
n − 2. This example also shows that, in general, there is no function
f(γ(G)) such that Dk(G) is connected for all k ≥ f(γ(G)).

In this paper we show thatDk(G) is connected whenever k ≥ min{|V (G)|−
1,Γ(G) + γ(G)}. Moreover, for bipartite and chordal graphs, Dk(G)
is connected whenever k ≥ Γ(G) + 1. Indeed we have yet to find an
example of any graph G for which DΓ+1(G) is not connected.

We consider only simple graphs, G, with vertex set V (G), edge set
E(G), and |V (G)| = n. For basic graph theory notation and definitions
see [3]. When G is clear from the context we use, for example, V,E
and Γ to denote V (G), E(G) and Γ(G), respectively.

2. Preliminary Results

We begin with some definitions and basic results.

Definition 1. Let G be a graph, k ≥ γ, and A,B dominating sets of G
of cardinality at least k. We write A ↔ B if there is a path in Dk(G)
joining A and B.

Proposition 1. For A,B ∈ Dk(G),
(i) A↔ B if and only if B ↔ A;
(ii) if A ⊆ B, then A↔ B and B ↔ A.

To see that d0(G) exists, notice that if G is a graph with n vertices,
then Dn(G) is connected, since for every dominating set A of G, A↔
V (G). In fact, we obtain a better upper bound on d0(G).

Lemma 2. If G has at least two independent edges, then Dn−1(G) is
connected.
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Proof. Note that if x ∈ V is not an isolated vertex, then V \{x} is a
dominating set of G. Suppose that S and T are two dominating sets
of G. If |S ∪ T | ≤ n − 1, then by Proposition 1, S ↔ S ∪ T ↔ T . If
|S ∪ T | = n, then let S ′ ⊇ S, and T ′ ⊇ T be sets of cardinality n− 1,
say S ′ = V \{s} and T ′ = V \{t}. It suffices to show that S ′ ↔ T ′.
Since S ′ and T ′ are dominating sets, neither s nor t is an isolated
vertex. If V \{s, t} is a dominating set then clearly S ′, V \{s, t}, T ′ is
a path in Dn−1(G). Otherwise it must be the case that, without loss
of generality, t is the only neighbor of s. By assumption, there is
another edge uv ∈ E where u, v ∈ S ′ ∩ T ′. Then a path in Dn−1(G) is
S ′ = V \{s}, V \{s, u}, V \{u}, V \{u, t}, V \{t} = T ′. �

The empty graph, Kn, has only one dominating set, namely, V (Kn).
Hence Dk(Kn) exists only when k = n, in which case it is the trivial
graph. For all other graphs there are values of k ≥ γ for which Dk(G)
is disconnected.

Lemma 3. For any graph G with at least one edge, DΓ(G) is not
connected.

Proof. Since G has at least one edge, DΓ(G) has at least two vertices.
Let S be a Γ-set of G. Then no proper subset of S is a dominating set
of G, and thus S is an isolated vertex in DΓ(G). �

Note that if all edges of G are incident with a common vertex, then
G is the union of a star with a (possibly empty) independent set of
vertices, and hence Γ = n− 1; by Lemma 3, Dn−1(G) is disconnected.
Thus, the assumption in Lemma 2 that G has two independent edges
is necessary.

Since any dominating set of cardinality greater than Γ has a subset
of cardinality Γ that is a dominating set, we get the following result.

Lemma 4. If k > Γ(G) and Dk(G) is connected, then Dk+1(G) is
connected.

It is possible to obtain a better upper bound on d0(G), as shown in
the next theorem.

Theorem 5. For any graph G with at least at least two disjoint edges,
if k ≥ min{n− 1,Γ(G) + γ(G)}, then Dk(G) is connected.

Proof. If Γ + γ > n − 1, then the result is immediate from Lemma 2.
Otherwise, let S be a γ-set of G, k ≥ Γ + γ, and let A be an arbitrary
dominating set of G with |A| ≤ k. It suffices to show that there is a
walk in Dk(G) from A to S.
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Choose A1 ⊆ A to be a minimal dominating set of G, and consider
the four sets A,A1, A1 ∪ S and S. Then |A| ≤ k, |A1| ≤ Γ, |A1 ∪ S| ≤
Γ + γ, and |S| = γ, so each set has cardinality at most k, and hence is
a vertex in Dk(G). Furthermore, A ⊇ A1 ⊆ (A1 ∪ S) ⊇ S, so A↔ A1,
A1 ↔ (A1 ∪ S) and (A1 ∪ S) ↔ S. The union of these three paths
produces a walk in Dk(G) from A to S. Thus there is a walk (and
hence a path) from A to S for any dominating set A with |A| ≤ k, and
hence Dk(G) is connected. �

Corollary 6. For any graph G with at least two disjoint edges, Γ(G)+
1 ≤ d0(G) ≤ min{n− 1,Γ(G) + γ(G)}.

In the following sections we show that if G is bipartite or chordal,
then d0(G) = Γ + 1.

3. Bipartite Graphs

Theorem 7. For any non-trivial bipartite graph G, DΓ+1(G) is con-
nected.

Proof. Suppose that G has k isolated vertices, and let G′ be the graph
obtained from G by deleting all isolated vertices. Since the isolated
vertices must be elements in every dominating set of G, it follows that
Γ(G′) = Γ(G) − k, and that DΓ(G)+1(G) is connected if and only if
DΓ(G′)+1(G′) is connected.

We may therefore restrict our attention to graphs with no isolated
vertices. Choose a bipartition (X, Y ) of G such that X is as small
as possible. Then Y and X are minimal dominating sets of G, with
Γ ≥ |Y | ≥ n

2
and |X| ≤ n

2
.

Let S be an arbitrary vertex in DΓ+1(G). We prove that there is a
walk in DΓ+1(G) between S and X. Choose S1 to be a dominating set
such that |S1| = Γ, S1 ↔ S and |S1 ∩ X| is as large as possible. We
will show that X ⊆ S1 and so in fact X = S1.

Consider the partition {X ∩S1, X\S1, Y ∩S1, Y \S1} of V (G). Since
S1 is a dominating set and G is bipartite, the vertices in X\S1 are
dominated by the set Y ∩ S1, and the vertices in Y \S1 are dominated
by the set X ∩ S1. Since G is bipartite and |S1| = Γ, |S1| ≥ n

2
. Thus

|X ∩ S1|+ |Y ∩ S1| ≥
n

2
.

Also, since |X| ≤ n
2
,

|X ∩ S1|+ |X\S1| ≤
n

2
,

and it follows that
|Y ∩ S1| ≥ |X\S1|.
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Let |Y ∩ S1| = m and |X\S1| = l and assume that |S1 ∩X| < |X|.
We show, roughly, that we can replace a vertex in Y ∩ S1 with one in
X\S1. Consider the subgraph H of G induced by (X\S1) ∪ (Y ∩ S1).
If degH(y) = 0 for some vertex y ∈ (Y ∩ S1), then y is dominated by
X ∩ S1 because G has no isolated vertices. Choose x ∈ X\S1, and set
S2 = (S1∪{x})\{y}. Then S2 is a dominating set of G, |S2| = |S1| = Γ,
and S1, S1 ∪ {x}, S2 is a path in DΓ+1 from S1 to S2. Otherwise, each
vertex in Y ∩S1 has degree at least one in H. Let F be a spanning forest
in H. Then |E(F )| ≤ m + l − 1 ≤ 2m − 1, implying that the average
degree of the vertices in F in Y ∩ S1 is less than two. Therefore, there
is a vertex y ∈ Y ∩S1 with degF (y) = 1. Let x denote the neighbour of
y in F , and define S2 = (S1 ∪ {x})\{y}. Then S2 is a dominating set
of G, |S2| = |S1| = Γ, and S1, S1 ∪ {x}, S2 is a path in DΓ+1(G) from
S1 to S2.

In both cases, |X ∩ S2| > |X ∩ S1|, which contradicts the choice of
S1. Thus (X = S1)↔ S. �

4. Chordal Graphs

Recall that a graph is chordal if and only if every cycle of length more
than three has a chord. Equivalently, a graph is chordal if and only if
it contains no induced cycle of length at least four. This immediately
implies that every induced subgraph of a chordal graph is chordal.
There are particular properties of chordal graphs that allow us to prove
that for any chordal graph G, d0(G) = Γ + 1.

For a graph G, we denote by α(G) the independence number of G,
i.e., the cardinality of a maximum independent set in G; ω(G) denotes
the clique number of G, the number of vertices in a largest complete
subgraph of G; χ(G) denotes the chromatic number of G. Finally, χ(G)
denotes the clique covering number of G, i.e., the minimum number of
complete graphs needed to cover the vertices in G.

The following are easily verified.

Remark 1. If S is an independent set in G, C a clique cover of G,
and |S| = |C|, then

α(G) = |S| = |C| = χ(G).

Remark 2. For a graph G and its complement G,

α(G) = ω(G) and χ(G) = χ(G).

Chordal graphs fall into the class of perfect graphs. By definition, a
graph G is perfect if and only if χ(H) = ω(H) for every induced sub-
graph H of G. The Perfect Graph Theorem, conjectured by Berge [1]
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and verified by Lovász [13], states that a graph is perfect if and only if
its complement is perfect. Thus (by Remark 2), an equivalent defini-
tion of a perfect graph is that G is perfect if and only if α(H) = χ(H)
for all induced subgraphs H of G.

Let G be a chordal graph. Then G is perfect, and hence

α(H) = χ(H)

for every induced subgraph H of G. Before proceeding with our theo-
rem for chordal graphs, we need one additional result.

Theorem 8 (Jacoboson and Peters [12]). For any chordal graph G,
α(G) = Γ(G).

Combining this with the Perfect Graph Theorem implies that for any
chordal graph G,

α(G) = Γ(G) = χ(G).

Theorem 9. For any non-trivial chordal graph G, DΓ+1(G) is con-
nected.

Proof. Since G is chordal, α(G) = Γ(G) = χ(G). Let S be a maximum
independent set in G. Then S is also a minimal dominating set, and
we may write S = {s1, s2, . . . , sΓ}. Now let C = {H1, H2, . . . , HΓ} be a
clique cover of G with a minimum number of cliques. Without loss of
generality, we may assume that si is a vertex in Hi and that the cliques
are vertex disjoint.

To show that DΓ+1(G) is connected, it suffices to show that there is
a path in DΓ+1(G) from an arbitrary dominating set A to the set S.
We proceed by induction on Γ.

Suppose G is a chordal graph with Γ = 1. Then G is a complete
graph, so any vertex forms a dominating set. It follows that D2(G) is
connected.

Now suppose that G is a chordal graph with Γ > 1. Let A be a
dominating set of G of cardinality at most Γ + 1, and let A1 ⊆ A be a
minimal dominating set of G. Since |A1| ≤ Γ, there exists some i for
which |V (Hi) ∩ A1| ≤ 1.

Case 1. Suppose that for some i, |V (Hi) ∩ A1| = 0. Without loss of
generality, |V (H1) ∩A1| = 0. Let G′ = G− V (H1). Then S ′ = S\{s1}
is a maximum independent set in G′ and C ′ = {H2, H3, . . . , HΓ} is a
clique cover of G′. Since |S ′| = |C ′|, it follows from Remark 1 that
|S ′| = α(G′). Furthermore, since G′ is chordal, α(G′) = Γ′ := Γ(G′) =
Γ− 1.
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Since |V (H1) ∩ A1| = 0, A1 is a dominating set of G′, and |A1| ≤
Γ = Γ′ + 1. By the induction hypothesis, DΓ′+1(G′) is connected. Let

A1, B1, B2, . . . , Bk, S
′

be a path in DΓ′+1(G′) from A1 to S ′. Then

A1 ∪ {s1}, B1 ∪ {s1}, B2 ∪ {s1}, . . . , Bk ∪ {s1}, S
is a path in DΓ+1(G) from A1 ∪ {s1} to S. It is clear that there is a
walk in DΓ+1(G) from A to A1 to A1 ∪ {s1}; combining this with the
path from A1 ∪{s1} to S gives us a walk, and hence a path, from A to
S in DΓ+1(G).

Case 2. We may now assume that for every i, 1 ≤ i ≤ Γ, |V (Hi) ∩
A1| ≥ 1. However, since |A1| ≤ Γ, this implies that |A1| = Γ and that
|V (Hi) ∩ A1| = 1 for each i.

We define a sequence of dominating sets A2, . . . , AΓ such that Ai+1

is either equal to Ai, or adjacent to Ai in DΓ+1. For i = 1, 2, . . . ,Γ, if
V (Hi)∩Ai = {si}, set Ai+1 = Ai. On the other hand, if V (Hi)∩Ai 6=
{si}, then set

Ai+1 = Ai ∪ {si}\(V (Hi) ∩ Ai).
Then Ai, Ai∪{si}, Ai∪{si}\(V (Hi)∩Ai) = Ai+1 is a path in DΓ+1(G)
between Ai and Ai+1. As in Case 1, it is clear that there is a path
in DΓ+1(G) from A to A1; the union of this path with the paths from
Ai to Ai+1, 1 ≤ i ≤ Γ, gives us a walk, and hence a path, from A to
AΓ+1 = S in DΓ+1(G). �

5. Other graphs from dominating sets

Given a graph G, a γ–graph of G, denoted G[γ], is defined in [14].
The graph G[γ] has vertices corresponding to the γ-sets of G; two such
sets S and T are are adjacent in G[γ] if there exist s ∈ S and t ∈ T
such that T = (S\{s}) ∪ {t}. As mentioned in Section 1, a different
definition for G[γ] is given in [7]. We generalize the graph given in [14]
as follows. Define Xk(G) to be the graph whose vertices correspond
to all the dominating sets of G of cardinality k, with an edge between
two dominating sets, S and T , if there exist s ∈ S and t ∈ T such that
T = (S\{s})∪ {t}. Clearly, Xγ(G) = G[γ]. In this section we consider
the relationship between Xk(G) and Dj(G) for j ≥ k.

Lemma 10. Let A and B be dominating sets of a graph G with |A| =
|B| = l. If A ↔ B in Dl+1(G) then there exists a walk between A
and B in Dl+1(G) that contains only dominating sets of cardinality l
or l + 1.
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Proof. Denote by W the set of ordered pairs (A,B) such that
(i) A and B are dominating sets of G of cardinality l, and
(ii) no path in Dl+1(G) from A to B contains any other dominating set
of cardinality l.
We first show that the lemma is true for pairs in W . Choose (A,B) ∈
W . WriteA0 = A andAr = B, and suppose thatA0, A1, A2, . . . , Ar−1, Ar
is a path in Dl+1(G).

Case 1. Suppose A1 = A0∪{x}. Then |A1| = l+ 1 so |A2| = l. Hence
A2 = B and the path uses only dominating sets of cardinality l and
l + 1.

Case 2. Suppose A1 = A0\{y} and A2 = A1 ∪{x}. Then A2 = B and
the path A0, A0 ∪ {x}, (A0 ∪ {x})\{y} = B uses only dominating sets
of cardinality l and l + 1.

Case 3. Suppose A1 = A0\{y} and A2 = A1\{z}. Let j be the least
i for which Ai ⊆ Ai+1, that is, Aj+1 = Aj ∪ {x}. For all i, Ai ∪ {x}
is a dominating set since Ai is a dominating set, and for 0 ≤ i ≤ j,
|Ai| ≤ l, so |Ai ∪ {x}| ≤ l + 1. Hence the sequence

A0, A0 ∪ {x}, A1 ∪ {x}, . . . , Aj−1 ∪ {x}, Aj+1, Aj+2, . . . , Ar−1, Ar

is a path in Dl+1(G). But now, |A1 ∪ {x}| = l, implying (A,B) 6∈ W .

Now suppose that A and B are dominating sets of G with |A| =
|B| = l, but with (A,B) 6∈ W . Write A0 = A and Ar = B, and let
A0, A1, . . . , Ar be a path between A and B. Let S0, S1, . . . , St be the
subsequence of vertices on this path that are the dominating sets of
cardinality l, so S0 = A0, St = Ar.

Note that (Si, Si+1) ∈ W for 0 ≤ i ≤ t − 1. It follows from Cases
1, 2 and 3 that there is a path between Si and Si+1 using only dom-
inating sets of cardinality l or l + 1. The union of these paths for
i = 0, 1, 2, . . . , t − 1 results in a walk between A and B in Dl+1 con-
taining only dominating sets of cardinality l and l + 1. �

Lemma 11. Let A and B be dominating sets of G with |A| = |B| = k.
Then A↔ B in Dk+1(G) if and only if A↔ B in Xk(G).

Proof. Let S and T be adjacent dominating sets in Xk(G) with T =
(S\{s})∪{t}. Then S, S ∪{t}, T is a path in Dk+1(G). Hence A↔ B
in Xk(G) implies A↔ B in Dk+1(G).

Conversely, suppose A↔ B in Dk+1(G). Then by Lemma 10, there
is a path A,A1, A2, . . . A2r+1, B such that |Ai| = k + 1 if i is odd, and
|Ai| = k if i is even. Hence A,A2, A4, . . . A2r, B is a path in Xk(G). �
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Figure 2. X2(K1,3).

Theorem 12. If Dk+1(G) is connected then Xk(G) is connected.

Proof. The proof follows immediately from Lemma 11. �

The converse of this theorem is false, as illustrated with the graphs
X2(K1,3) and D3(K1,3). We see in Figure 2 that X2(K1,3) is connected,
while Figure 1 shows that D3(K1,3) is not connected.

6. Directions for further work

In this paper we have just begun the study of dominating graphs.
There are a range of questions that should be addressed in future work.

The major open question suggested by this paper is whether d0(G) =
Γ + 1, for all graphs G. If this is not true, then is there a characteri-
zation of when d0(G) = Γ + 1? What is the complexity of determining
whether two dominating sets of G are in the same connected compo-
nent of DΓ+1(G)? When Dk(G) is connected, what is the diameter of
Dk(G), i.e, how long is the longest shortest path between dominating
sets? Under what conditions is Dk(G) Hamiltonian? Which graphs
are Dk(G) for some G? Note that for the star graph, D2(K1,n) ∼= K1,n,
raising the question: are there other graphs G for which Dk(G) ∼= G?
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