2,817 research outputs found

    Graph Algorithms and Complexity Aspects on Special Graph Classes

    Get PDF
    Graphs are a very flexible tool within mathematics, as such, numerous problems can be solved by formulating them as an instance of a graph. As a result, however, some of the structures found in real world problems may be lost in a more general graph. An example of this is the 4-Colouring problem which, as a graph problem, is NP-complete. However, when a map is converted into a graph, we observe that this graph has structural properties, namely being (K_5, K_{3,3})-minor-free which can be exploited and as such there exist algorithms which can find 4-colourings of maps in polynomial time. This thesis looks at problems which are NP-complete in general and determines the complexity of the problem when various restrictions are placed on the input, both for the purpose of finding tractable solutions for inputs which have certain structures, and to increase our understanding of the point at which a problem becomes NP-complete. This thesis looks at four problems over four chapters, the first being Parallel Knock-Out. This chapter will show that Parallel Knock-Out can be solved in O(n+m) time on P_4-free graphs, also known as cographs, however, remains hard on split graphs, a subclass of P_5-free graphs. From this a dichotomy is shown on PkP_k-free graphs for any fixed integer kk. The second chapter looks at Minimal Disconnected Cut. Along with some smaller results, the main result in this chapter is another dichotomy theorem which states that Minimal Disconnected Cut is polynomial time solvable for 3-connected planar graphs but NP-hard for 2-connected planar graphs. The third chapter looks at Square Root. Whilst a number of results were found, the work in this thesis focuses on the Square Root problem when restricted to some classes of graphs with low clique number. The final chapter looks at Surjective H-Colouring. This chapter shows that Surjective H-Colouring is NP-complete, for any fixed, non-loop connected graph H with two reflexive vertices and for any fixed graph H’ which can be obtained from H by replacing vertices with true twins. This result enabled us to determine the complexity of Surjective H-Colouring on all fixed graphs H of size at most 4

    On the Complexity of Digraph Colourings and Vertex Arboricity

    Full text link
    It has been shown by Bokal et al. that deciding 2-colourability of digraphs is an NP-complete problem. This result was later on extended by Feder et al. to prove that deciding whether a digraph has a circular pp-colouring is NP-complete for all rational p>1p>1. In this paper, we consider the complexity of corresponding decision problems for related notions of fractional colourings for digraphs and graphs, including the star dichromatic number, the fractional dichromatic number and the circular vertex arboricity. We prove the following results: Deciding if the star dichromatic number of a digraph is at most pp is NP-complete for every rational p>1p>1. Deciding if the fractional dichromatic number of a digraph is at most pp is NP-complete for every p>1,p≠2p>1, p \neq 2. Deciding if the circular vertex arboricity of a graph is at most pp is NP-complete for every rational p>1p>1. To show these results, different techniques are required in each case. In order to prove the first result, we relate the star dichromatic number to a new notion of homomorphisms between digraphs, called circular homomorphisms, which might be of independent interest. We provide a classification of the computational complexities of the corresponding homomorphism colouring problems similar to the one derived by Feder et al. for acyclic homomorphisms.Comment: 21 pages, 1 figur

    The Complexity of Change

    Full text link
    Many combinatorial problems can be formulated as "Can I transform configuration 1 into configuration 2, if certain transformations only are allowed?". An example of such a question is: given two k-colourings of a graph, can I transform the first k-colouring into the second one, by recolouring one vertex at a time, and always maintaining a proper k-colouring? Another example is: given two solutions of a SAT-instance, can I transform the first solution into the second one, by changing the truth value one variable at a time, and always maintaining a solution of the SAT-instance? Other examples can be found in many classical puzzles, such as the 15-Puzzle and Rubik's Cube. In this survey we shall give an overview of some older and more recent work on this type of problem. The emphasis will be on the computational complexity of the problems: how hard is it to decide if a certain transformation is possible or not?Comment: 28 pages, 6 figure

    On the Complexity of Role Colouring Planar Graphs, Trees and Cographs

    Full text link
    We prove several results about the complexity of the role colouring problem. A role colouring of a graph GG is an assignment of colours to the vertices of GG such that two vertices of the same colour have identical sets of colours in their neighbourhoods. We show that the problem of finding a role colouring with 1<k<n1< k <n colours is NP-hard for planar graphs. We show that restricting the problem to trees yields a polynomially solvable case, as long as kk is either constant or has a constant difference with nn, the number of vertices in the tree. Finally, we prove that cographs are always kk-role-colourable for 1<k≤n1<k\leq n and construct such a colouring in polynomial time

    Recognizing Graphs Close to Bipartite Graphs with an Application to Colouring Reconfiguration

    Full text link
    We continue research into a well-studied family of problems that ask whether the vertices of a graph can be partitioned into sets AA and~BB, where AA is an independent set and BB induces a graph from some specified graph class G{\cal G}. We let G{\cal G} be the class of kk-degenerate graphs. This problem is known to be polynomial-time solvable if k=0k=0 (bipartite graphs) and NP-complete if k=1k=1 (near-bipartite graphs) even for graphs of maximum degree 44. Yang and Yuan [DM, 2006] showed that the k=1k=1 case is polynomial-time solvable for graphs of maximum degree 33. This also follows from a result of Catlin and Lai [DM, 1995]. We consider graphs of maximum degree k+2k+2 on nn vertices. We show how to find AA and BB in O(n)O(n) time for k=1k=1, and in O(n2)O(n^2) time for k≥2k\geq 2. Together, these results provide an algorithmic version of a result of Catlin [JCTB, 1979] and also provide an algorithmic version of a generalization of Brook's Theorem, which was proven in a more general way by Borodin, Kostochka and Toft [DM, 2000] and Matamala [JGT, 2007]. Moreover, the two results enable us to complete the complexity classification of an open problem of Feghali et al. [JGT, 2016]: finding a path in the vertex colouring reconfiguration graph between two given ℓ\ell-colourings of a graph of maximum degree kk

    Track Layouts of Graphs

    Get PDF
    A \emph{(k,t)(k,t)-track layout} of a graph GG consists of a (proper) vertex tt-colouring of GG, a total order of each vertex colour class, and a (non-proper) edge kk-colouring such that between each pair of colour classes no two monochromatic edges cross. This structure has recently arisen in the study of three-dimensional graph drawings. This paper presents the beginnings of a theory of track layouts. First we determine the maximum number of edges in a (k,t)(k,t)-track layout, and show how to colour the edges given fixed linear orderings of the vertex colour classes. We then describe methods for the manipulation of track layouts. For example, we show how to decrease the number of edge colours in a track layout at the expense of increasing the number of tracks, and vice versa. We then study the relationship between track layouts and other models of graph layout, namely stack and queue layouts, and geometric thickness. One of our principle results is that the queue-number and track-number of a graph are tied, in the sense that one is bounded by a function of the other. As corollaries we prove that acyclic chromatic number is bounded by both queue-number and stack-number. Finally we consider track layouts of planar graphs. While it is an open problem whether planar graphs have bounded track-number, we prove bounds on the track-number of outerplanar graphs, and give the best known lower bound on the track-number of planar graphs.Comment: The paper is submitted for publication. Preliminary draft appeared as Technical Report TR-2003-07, School of Computer Science, Carleton University, Ottawa, Canad
    • …
    corecore