research

On the Complexity of Role Colouring Planar Graphs, Trees and Cographs

Abstract

We prove several results about the complexity of the role colouring problem. A role colouring of a graph GG is an assignment of colours to the vertices of GG such that two vertices of the same colour have identical sets of colours in their neighbourhoods. We show that the problem of finding a role colouring with 1<k<n1< k <n colours is NP-hard for planar graphs. We show that restricting the problem to trees yields a polynomially solvable case, as long as kk is either constant or has a constant difference with nn, the number of vertices in the tree. Finally, we prove that cographs are always kk-role-colourable for 1<kn1<k\leq n and construct such a colouring in polynomial time

    Similar works

    Full text

    thumbnail-image

    Available Versions