25,694 research outputs found

    Characterising and recognising game-perfect graphs

    Get PDF
    Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only ω(H)\omega(H) colours, where ω(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201

    Positional games on random graphs

    Full text link
    We introduce and study Maker/Breaker-type positional games on random graphs. Our main concern is to determine the threshold probability pFp_{F} for the existence of Maker's strategy to claim a member of FF in the unbiased game played on the edges of random graph G(n,p)G(n,p), for various target families FF of winning sets. More generally, for each probability above this threshold we study the smallest bias bb such that Maker wins the (1 b)(1\:b) biased game. We investigate these functions for a number of basic games, like the connectivity game, the perfect matching game, the clique game and the Hamiltonian cycle game

    Clique-Relaxed Graph Coloring

    Get PDF
    We define a generalization of the chromatic number of a graph G called the k-clique-relaxed chromatic number, denoted χ(k)(G). We prove bounds on χ(k)(G) for all graphs G, including corollaries for outerplanar and planar graphs. We also define the k-clique-relaxed game chromatic number, χg(k)(G), of a graph G. We prove χg(2)(G)≤ 4 for all outerplanar graphs G, and give an example of an outerplanar graph H with χg(2)(H) ≥ 3. Finally, we prove that if H is a member of a particular subclass of outerplanar graphs, then χg(2)(H) ≤ 3

    Strong games played on random graphs

    Get PDF
    In a strong game played on the edge set of a graph G there are two players, Red and Blue, alternating turns in claiming previously unclaimed edges of G (with Red playing first). The winner is the first one to claim all the edges of some target structure (such as a clique, a perfect matching, a Hamilton cycle, etc.). It is well known that Red can always ensure at least a draw in any strong game, but finding explicit winning strategies is a difficult and a quite rare task. We consider strong games played on the edge set of a random graph G ~ G(n,p) on n vertices. We prove, for sufficiently large nn and a fixed constant 0 < p < 1, that Red can w.h.p win the perfect matching game on a random graph G ~ G(n,p)
    • …
    corecore