780 research outputs found

    Multilayer perceptron neural networks model for meteosat second generation SEVIRI daytime cloud masking

    Get PDF
    A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager) images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 Ī¼m) with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery

    Classification and modelling of urban micro-climates using multisensoral and multitemporal remote sensing data

    No full text
    Remote sensing has widely been used in urban climatology since it has the advantage of a simultaneous synoptic view of the full urban surface. Methods include the analysis of surface temperature patterns, spatial (biophysical) indicators for urban heat island modelling, and flux measurements. Another approach is the automated classification of urban morphologies or structural types. In this study it was tested, whether Local Climate Zones (a new typology of thermally 'rather' homogenous urban morphologies) can be automatically classified from multisensor and multitemporal earth observation data. Therefore, a large number of parameters were derived from different datasets, including multitemporal Landsat data and morphological profiles as well as windowed multiband signatures from an airborne IFSAR-DHM. The results for Hamburg, Germany, show that different datasets have high potential for the differentiation of urban morphologies. Multitemporal thermal data performed very well with up to 96.3 % overall classification accuracy with a neuronal network classifier. The multispectral data reached 95.1 % and the morphological profiles 83.2 %.The multisensor feature sets reached up to 97.4 % with 100 selected features, but also small multisensoral feature sets reached good results. This shows that microclimatic meaningful urban structures can be classified from different remote sensing datasets. Further, the potential of the parameters for spatiotemporal modelling of the mean urban heat island was tested. Therefore, a comprehensive mobile measurement campaign with GPS loggers and temperature sensors on public buses was conducted in order to gain in situ data in high spatial and temporal resolution

    Estimating and examining the sensitivity of different vegetation indices to fractions of vegetation cover at different scaling Grids for Early Stage Acacia Plantation Forests Using a Fixed-Wing UAS

    Get PDF
    Understanding the information on land conditions and especially green vegetation cover is important for monitoring ecosystem dynamics. The fraction of vegetation cover (FVC) is a key variable that can be used to observe vegetation cover trends. Conventionally, satellite data are utilized to compute these variables, although computations in regions such as the tropics can limit the amount of available observation information due to frequent cloud coverage. Unmanned aerial systems (UASs) have become increasingly prominent in recent research and can remotely sense using the same methods as satellites but at a lower altitude. UASs are not limited by clouds and have a much higher resolution. This study utilizes a UAS to determine the emerging trends for FVC estimates at an industrial plantation site in Indonesia, which utilizes fast-growing Acacia trees that can rapidly change the land conditions. First, the UAS was utilized to collect high-resolution RGB imagery and multispectral images for the study area. The data were used to develop general land use/land cover (LULC) information for the site. Multispectral data were converted to various vegetation indices, and within the determined resolution grid (5, 10, 30 and 60 m), the fraction of each LULC type was analyzed for its correlation between the different vegetation indices (Vis). Finally, a simple empirical model was developed to estimate the FVC from the UAS data. The results show the correlation between the FVC (acacias) and different Vis ranging from R2 = 0.66ā€“0.74, 0.76ā€“0.8, 0.84ā€“0.89 and 0.93ā€“0.94 for 5, 10, 30 and 60 m grid resolutions, respectively. This study indicates that UAS-based FVC estimations can be used for observing fast-growing acacia trees at a fine scale resolution, which may assist current restoration programs in Indonesia

    Coastal wetland mapping with sentinel-2 MSI imagery based on gravitational optimized multilayer perceptron and morphological attribute profiles.

    Get PDF
    Coastal wetland mapping plays an essential role in monitoring climate change, the hydrological cycle, and water resources. In this study, a novel classification framework based on the gravitational optimized multilayer perceptron classifier and extended multi-attribute profiles (EMAPs) is presented for coastal wetland mapping using Sentinel-2 multispectral instrument (MSI) imagery. In the proposed method, the morphological attribute profiles (APs) are firstly extracted using four attribute filters based on the characteristics of wetlands in each band from Sentinel-2 imagery. These APs form a set of EMAPs which comprehensively represent the irregular wetland objects in multiscale and multilevel. The EMAPs and original spectral features are then classified with a new multilayer perceptron (MLP) classifier whose parameters are optimized by a stability-constrained adaptive alpha for a gravitational search algorithm. The performance of the proposed method was investigated using Sentinel-2 MSI images of two coastal wetlands, i.e., the Jiaozhou Bay and the Yellow River Delta in Shandong province of eastern China. Comparisons with four other classifiers through visual inspection and quantitative evaluation verified the superiority of the proposed method. Furthermore, the effectiveness of different APs in EMAPs were also validated. By combining the developed EMAPs features and novel MLP classifier, complicated wetland types with high within-class variability and low between-class disparity were effectively discriminated. The superior performance of the proposed framework makes it available and preferable for the mapping of complicated coastal wetlands using Sentinel-2 data and other similar optical imagery

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in todayā€™s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach

    Target Detection: Remote Sensing Techniques for Defence Applications

    Get PDF
    The tremendous development in remote sensing technology in the recent past has opened up new challenges in defence applications. On important area of such applications is in target detection. This paper describes both classical and newly developed approaches to detect the targets by using remotely-sensed digital images. The classical approach includes statistical classification methods and image processing techniques. The new approach deals with a relatively new sensor technology, namely, synthetic aperture radar (SAR) systems and fast developing tools, like neural networks and multisource data integration for analysis and interpretation. With SAR images, it is possible to detect targets or features of a target that is otherwise not possible. Neural networks and multisource data integration tools also have a great potential in analysing and interpreting remote sensing data for target detection

    Crop yield prediction using multipolarization radar and multitemporal visible / infrared imagery

    Get PDF
    This paper describes research undertaken on the improvement of within-field late season yield forecasting for crops such as wheat using multi-temporal visible/infrared satellite imagery and multi-polarization radar satellite imagery. Experiments have been carried out using ASAR imagery from Envisat combined with nine bands of ASTER imagery from the NASA Terra satellite. An experimental test site in an agricultural area in the county of Lincolnshire, UK, has been used. The satellite imagery has been integrated using artificial neural networks which have been trained as predictors of the spatial distributions of yield per unit area in a variety of fields. Ground truth data in the form of yield maps from GPS-enabled combine harvesters have been used to train the neural networks and to evaluate accuracy. The results show that the combinations of ASTER and ASAR imagery can provide enhanced yield predictions with overall correlations of up to 0.77 between predicted and actual yield patterns. The results also show that the use of dual polarization radar data alone is not sufficient to give reasonable yield predictions even in a multi-temporal mode. It has also been shown that varying the architectures of the neural networks with ensembles can improve the overall results

    Application and improvement of soil spatial distribution mapping using advanced modelling techniques

    Get PDF
    The main purpose of this contribution is to develop Ā realistic prediction digital soil maps in order to increase their visuality, and to evaluate and compare the performance of different modeling techniques: a) Kriging, b) Artificial Neural Network ā€“ Multilayer Perceptron (ANN-MLP) and c) Multiple Polynomial Regressions (MPR). The followingĀ  criteria were used to determine selection of the testing site for the modeling: (1) intensive metal ore mining and metallurgical processing; (2) geomorphological natural features; (3) regular geological setting, and (4) the remaining minefields. The success of Digital Soil Mapping and the plausibility of prediction maps increases with the availability of spatial data, the availability of computing power for processing data, the development of data-mining tools, geographical information systems (GIS) and numerous applications beyond geostatistics. Advanced prediction modeling techniques, ANN-MLP and MPR include geospatial parameters sourced from Digital Elevation Models (DEM), land use and remote sensing, applied in combination with costly and time-consuming soil measurements, developed and finally incorporated into the models of spatial distribution in the form of 2D or 3D maps. Innovative approaches to modeling assist us in the reconstruction of different processes that impact the entire study area, simultaneously. This holistic approach represents a novelty in contamination mapping and develops prediction models to help in the reconstruction of main distribution pathways, to assess the real size of the affected area as well as improving the data interpretation.</p
    • ā€¦
    corecore