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Abstract: Coastal wetland mapping plays an essential role in monitoring climate change,
the hydrological cycle, and water resources. In this study, a novel classification framework based on
the gravitational optimized multilayer perceptron classifier and extended multi-attribute profiles
(EMAPs) is presented for coastal wetland mapping using Sentinel-2 multispectral instrument (MSI)
imagery. In the proposed method, the morphological attribute profiles (APs) are firstly extracted using
four attribute filters based on the characteristics of wetlands in each band from Sentinel-2 imagery.
These APs form a set of EMAPs which comprehensively represent the irregular wetland objects in
multiscale and multilevel. The EMAPs and original spectral features are then classified with a new
multilayer perceptron (MLP) classifier whose parameters are optimized by a stability-constrained
adaptive alpha for a gravitational search algorithm. The performance of the proposed method was
investigated using Sentinel-2 MSI images of two coastal wetlands, i.e., the Jiaozhou Bay and the
Yellow River Delta in Shandong province of eastern China. Comparisons with four other classifiers
through visual inspection and quantitative evaluation verified the superiority of the proposed
method. Furthermore, the effectiveness of different APs in EMAPs were also validated. By combining
the developed EMAPs features and novel MLP classifier, complicated wetland types with high
within-class variability and low between-class disparity were effectively discriminated. The superior
performance of the proposed framework makes it available and preferable for the mapping of
complicated coastal wetlands using Sentinel-2 data and other similar optical imagery.

Keywords: image classification; coastal wetland; morphological attribute profiles; multilayer
perceptron; gravitational search algorithm

1. Introduction

As one of the most biologically productive ecosystems on earth, wetlands are of significant
importance for hydrological and ecological processes [1]. They play a vital role in flood storage,
water-quality improvement, shoreline protection, carbon sequestration, and, more importantly,
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a desirable habitat for both animals and plants [2–4]. Unfortunately, worldwide wetlands, especially
in coastal areas, are vulnerable to threats from nature and human influence, including shoreline
erosion because of tides and storms, reservoir construction, and increasing urbanization [3,5,6].
Therefore, accurate mapping of the coastal wetlands is essential for their scientific management and
sustainable development.

Remote-sensing techniques benefit from their wide coverage and their regular and rapid
monitoring capacity; they are recognized as labor-saving and low-cost techniques for wetland mapping
and assessment [7–10]. However, due to the location of coastal wetlands at the joint zone between
continent and sea, there are many mixed objects of anthropogenic wetlands and semi-natural regions
which are usually fragmented, complicated, and heterogeneous [11,12]. On one hand, some land
covers, such as sea, breeding aquatics, reservoirs, etc., show subtle differences in their spectral features.
Distinguishing those similar wetland land covers is challenging. On the other hand, the land covers from
the same wetland type present strong spectral heterogeneity because of the variances in water volume,
salt content, vegetation density, and illumination conditions [6,13–15]. Consequently, characteristics
such as high within-class variability and low between-class disparity make the classification of coastal
wetlands a challenging task.

In order to improve classification accuracy of coastal wetlands, various feature extraction methods
were introduced to increase the separability of different land covers. In early studies, the classification
of coastal wetland mainly relied on the medium–low-resolution images, and the utilized feature
extraction methods mainly focused on spectral information at pixel-level, such as the normalized
difference vegetation index (NDVI), normalized difference water index (NDWI), land surface water
index (LSWI), and so on [4,11,16]. Although these methods can be used to separate land covers with
different spectral characteristics, they are hardly applied to realize the refined classification of land
cover using high-resolution remote-sensing images with several spectral bands and abundant spatial
information [17]. To model the spatial characteristics of different land covers, many spatial feature
extraction methods based on a moving window, including gray-level co-occurrence matrix (GLCM),
Gabor filtering, and Markov random field (MRF) were tested [18,19]. In this way, geometry and
texture information can be employed to discriminate objects better [20]. However, both pixel-based
and moving window-based approaches need to predetermine object structures, while land covers
in the real world usually are irregularly shaped [21,22]. In general, when the input data are highly
correlated with nearby pixels, a smaller window cannot provide sufficient samples for characterizing
the object of interest [23,24], whilst a larger one may cause intractable computational problems [23,25].
In recent years, morphological attribute profiles (APs) [20,24–26] were widely employed to model
spatial features of land covers in remote-sensing datasets. In particular, extended multi-attribute
profiles (EMAPs) [27–29] could present multilevel analysis for imagery via sequentially applying
morphological attribute filters that are able to characterize the information in different object structures.
As described, the construction of EMAPs avoids the requirement for predefined image structures.
Moreover, it can keep the geometrical traits for relevant areas and effectively attenuate unimportant
details [20,27,30], which is useful for preserving the boundaries of wetland regions and decreasing
their within-class spectral and spatial variabilities.

Currently, machine learning is recognized as the most promising technique for quantitative
information retrieval from remotely sensed images [31]. A series of machine learning approaches
were developed, such as maximum likelihood (ML) [32], support vector machines (SVMs) [10,33],
random forest (RF) [34,35], neural networks (NNs) [36], and so on. Among the various machine
learning methods, NN-based classifiers gain superiority in terms of robustness, high data error tolerance,
and better classification performance [36–38]. When handling a complex dataset, multilayer perceptron
(MLP) neural networks [39] are required, which feature more layers with a full connection between
all neurons. As a typical nonparametric classifier, MLP is designed to learn the nonlinear
features irrespective of their statistical properties, which is widely used in remotely sensed image
processing [40–42] including coastal wetland classification [10,37,43]. Nevertheless, the estimation of
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parameters, such as weights and biases, in MLP is always a difficult task [44,45]. These parameters
dramatically affect the trained model’s generalization capacity, as getting their optimal settings
inevitably turns into a vital problem. In general, the error backpropagation algorithm (BP) [2,46] is
utilized to train parameters weights and biases. This approach, on the other hand, easily falls into
local optima and gets premature convergence [38,47]. In recent years, because of their promising
self-organization and global optimization abilities, swarm intelligence algorithms, such as genetic
algorithms (GAs) [40,48], particle swarm optimization (PSO) algorithms [46,49,50], and differential
evolution (DE) [51] were successfully used to optimize the parameters of MLP.

Gravitational search algorithm (GSA) [52,53] is a recently developed swarm intelligence algorithm
inspired by Newton’s law of gravity [54]. In GSA, agents are recognized as celestial bodies and search
for the optimal solution via interactive movements under gravitational force. These years, GSA is
increasingly popular because of its simple structure, well-understood theory, easily implemented
strategy, and so on [55,56]. Nevertheless, GSA still faces a premature convergence problem
when processing complicated problems [56–59]. Thus, many GSA variants were proposed [56,60],
including the stability-constrained adaptive alpha for the gravitational search algorithm (SCAA) [61],
in which the searching performance of GSA was improved by adaptively adjusting the important
parameter alpha.

As the Sentinel-2 multispectral instrument (MSI) sensor simultaneously possesses rich spatial
and spectral information, it shows enormous potential in characterizing wetland extents [9,62–64].
Researchers proposed many advanced techniques for mapping wetlands from Sentinel-2 images.
Stratoulias et al. [9] mapped lakeshore areas using the selected high-spatial-resolution (i.e., 10 m and
20 m) bands of Sentinel-2 imagery on the basis of hyperspectral data and the satellite’s spectral response
function. Chatziantoniou et al. [8] evaluated the performance of a synergistic utilization of Sentinel-1
and Sentinel-2 dataset for representing land use and land cover (LULC) of wetlands under SVMs.
Therein, spectral features (gained from minimum noise fraction (MNF), principal component analysis
(PCA)) and spatial features (GLCM texture, shape, and crop features) were extracted and employed
on a complex wetland region. In Reference [65], an approach combining pixel-based, index-based,
and object-based classification technique was introduced, in which NDVI and NDWI were employed
for the discrimination of the contents within the wetlands, and an object-based method was used
to extract the boundaries of wetland types. However, few of the methods tried utilizing the spatial
information of Sentinel-2 imagery in multilevel to model the scale-varying objects in wetlands.

The overarching aim of this study was to propose a novel classification framework for Sentinel-2
MSI imagery of complex coastal wetlands by developing an optimized multilayer perceptron classifier
and applying it to the spectral–spatial features constructed by the multispectral features and the
EMAPs. The contributions of this research can be summarized as follows:

(1) Wetland EMAPs feature extraction: Four attribute filters are introduced based on the
characteristics of wetlands in each band from Sentinel-2 imagery to extract the EMAPs that model the
wetland objects in multiscale and multilevel.

(2) A novel MLP classifier: The SCAA optimized MLP, which is denoted as SCAA_MLP, is
proposed to select the most appropriate parameters of the MLP classifier. The superiority of SCAA in
balancing exploration and exploitation can effectively promote the capability of MLP classifiers.

(3) Coastal wetland mapping: Through the application of SCAA_MLP classifier to the spectral
and spatial features, accurate coastal wetland maps can be obtained.

The remainder of the paper is organized as follows: Section 2 gives a detailed introduction of
the proposed method. Section 3 presents the studied areas and the experimental results. In Section 4,
a careful discussion of the proposed method with some future scope is provided. Finally, Section 5
concludes the whole paper.
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2. Methodology

The workflow of the proposed wetland mapping methodology is given in Figure 1, which includes
the following three steps: EMAP feature extraction, MLP optimization by SCAA, and wetland
classification via the proposed classifier. EMAPs of wetland are extracted using four attributes to
describe different spatial properties of wetland objects. The novel MLP classifier is developed using
SCAA and then applied for performing land-cover classification. More details about the proposed
method are described in the following sections.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 24 

 

developed using SCAA and then applied for performing land-cover classification. More details about 
the proposed method are described in the following sections. 

 

Figure 1. Flowchart of coastal wetland mapping from Sentinel-2 multispectral instrument (MSI) 
imagery. 

2.1. Wetland EMAP Feature Extraction 

The coastal wetland scenes in study areas are complicated, and the spectra of wetland types have 
high between-class similarity and large within-class variation. Thus, it is difficult to classify wetland 
types merely depending on the spectral information. In recent years, the morphological attribute 
profile was applied as an effective spatial feature extraction tool, which performs a multilevel 
characterization of imagery to model various structural information. More importantly, using 
different attributes and multilevel operators, it can describe the multiscale and irregularly shaped 
wetland land covers. Furthermore, the attribute filter can effectively preserve the geometrical 
characteristics of objects and attenuate unimportant details [27]. Hence, it is useful to keep the 
boundaries of wetland types and decrease their within-class spectral and spatial variabilities. 
Therefore, in this paper, in addition to the original spectral band characteristics of wetlands, their 
spatial features in the form of morphological attribute profiles are constructed from Sentinel-2 
imagery. 

The EMAPs are obtained using different types of attributes on several grayscale images and 
stacking them together. Specifically, for a single grayscale image I, when the attribute is selected, the 
corresponding AP is achieved via applying a sequence of attribute thinning and thickening operators 
based on an ordered threshold {k1, k2, …, kn} as follows [66]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
n n-1 1 1 n-1 nk k k k k kAP I = I , I ,..., I ,I,γ I ,...,γ I ,γ Iφ φ φ  (1) 

where 
nk (I)φ represents the filtered image generated via thickening operation φ  with threshold kn.  

A similar explanation is made for ( )γ
nk
I . As a consequence, the number of images in the output 

( )AP I  is (2n + 1), which consists of the original grayscale image, n filtered images from thinning 
profiles, and the remaining n from thickening profiles. 

Sentinel-2 imagery is a stack of grayscale images. In this research, we present attribute filtering 
operators on the full original spectral data (including 12 bands). That is, an extended attribute profile 

Figure 1. Flowchart of coastal wetland mapping from Sentinel-2 multispectral instrument (MSI) imagery.

2.1. Wetland EMAP Feature Extraction

The coastal wetland scenes in study areas are complicated, and the spectra of wetland types have
high between-class similarity and large within-class variation. Thus, it is difficult to classify wetland
types merely depending on the spectral information. In recent years, the morphological attribute profile
was applied as an effective spatial feature extraction tool, which performs a multilevel characterization
of imagery to model various structural information. More importantly, using different attributes
and multilevel operators, it can describe the multiscale and irregularly shaped wetland land covers.
Furthermore, the attribute filter can effectively preserve the geometrical characteristics of objects and
attenuate unimportant details [27]. Hence, it is useful to keep the boundaries of wetland types and
decrease their within-class spectral and spatial variabilities. Therefore, in this paper, in addition to the
original spectral band characteristics of wetlands, their spatial features in the form of morphological
attribute profiles are constructed from Sentinel-2 imagery.

The EMAPs are obtained using different types of attributes on several grayscale images and
stacking them together. Specifically, for a single grayscale image I, when the attribute is selected,
the corresponding AP is achieved via applying a sequence of attribute thinning and thickening
operators based on an ordered threshold {k1, k2, . . . , kn} as follows [66]:

AP(I) =
{
φkn(I),φkn−1

(I), . . . ,φk1
(I), I,γk1

(I), . . . ,γkn−1
(I),γkn(I)

}
(1)

where φkn(I) represents the filtered image generated via thickening operation φ with threshold kn.
A similar explanation is made for γkn(I). As a consequence, the number of images in the output AP(I)
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is (2n + 1), which consists of the original grayscale image, n filtered images from thinning profiles,
and the remaining n from thickening profiles.

Sentinel-2 imagery is a stack of grayscale images. In this research, we present attribute filtering
operators on the full original spectral data (including 12 bands). That is, an extended attribute profile
(EAP) is gained through producing an AP on each grayscale image of Sentinel-2 dataset S and then
building a stacked vector.

EAP(S) =
{
AP(B1), AP(B2), . . . , AP(Bl)

}
(2)

where Bi is the ith band in the Sentinel-2 image and l is the number of bands.
To fully characterize the spatial features in the scene, different kinds of attributes are often

applied [67]. These attributes are usually calculated with the geometric, spectral, or other characteristics
of objects [24]. In this study, four attributes, area (region size), standard deviation (homogeneity of
regions), diagonal length of bounding box, and moment of inertia (elongation of regions), are adopted.
For the Sentinel-2 imagery S, as illustrated in Figure 2, its EMAPs are built with four attributes.

EMAP(S) =
{
EAPa(S), EAPs(S), EAPd(S), EAPi(S)

}
(3)

where EAPa(S), EAPs(S), EAPd(S), EAPi(S) are the EAPs for the image S considering the attributes
area, standard deviation, diagonal length of bounding box, and moment of inertia, respectively.
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imagery. The extended multi-attribute profile (EMAP) is a combination of EAPs generated with
four different attributes.

The performance of the attribute filtering operation highly depends on its threshold value
settings [29]. Due to the irregularly shaped and multiscale characteristics of wetland objects, selection
of a proper threshold value can be a challenging task. A smaller value may introduce massive
noise when processing large-sized heterogeneous wetland types, while a larger one could cause
over-smoothness and erase some small useful information. In order to solve this issue, a threshold
selection strategy according to previous studies [24] is utilized, which generates dense threshold
values from a wide range. Therein, the filter thresholds of attributes area and standard deviation are
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set according to the characteristics of wetlands on Sentinel-2 datasets. As for the thresholds of area
attribute ka, each image resolution is considered as follows:

ka(Bi) =

(
1000
sri

)
× {amin, amin + δa, amin + 2δa, . . . , amax} (4)

where sri is the spatial resolution (in meters) of the ith band in Sentinel-2 imagery; amin and amax are set
to 1 and 14, respectively, with an increasing step size δa equal to 1. As shown, due to the thresholds of
each band being set according to its own spatial resolution, this method can better express the area
information of ground objects in different resolution bands. The band with a high resolution (10 m)
has more detailed information and the value of threshold is relatively small, which can be used to
extract surface features with a small area. On the contrary, the larger threshold value corresponding
to the low-resolution bands (20 m and 60 m) can be used to extract the contour information of
large-area features.

The thresholds of standard deviation attribute ks are adjusted based on the mean of the individual
features as follows:

ks(Bi) =
( µi

100

)
× {σmin, σmin + δs, σmin + 2δs, . . . , σmax} (5)

where ui denotes the average value of the ith band. The values of σmin, σmax, and δs are set to 2.5%,
27.5%, and 2.5%, respectively.

As for the diagonal length of bounding box attribute, its threshold values are varied between
10 and 100 with intervals equal to 10 (i.e., {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}), whilst the filter
thresholds of the moment of inertia attribute are selected from the range [0.1, 0.9] with intervals
equal to 0.1 [33] (i.e., {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}). Accordingly, for the Sentinel 2 images
with 12 bands, 1104 filtered images (including 348 for EAPa, 276 for EAPs, 228 for EAPi, and 252
for EAPd) can be obtained. In this context, the EMAPs are constructed with rich spatial information
but inevitably possessing a large dimension and high redundancy. To reduce the computational
burden, feature selection can be performed, for example, using the functions provided by the Weka
(Waikato Environment for Knowledge Analysis) software [68].

2.2. Gravitational Optimized Multilayer Perceptron

Multilayer perceptron (MLP) is a commonly used neural network in remote sensing because of
its relatively simple structure and higher classification capacity [36,69,70]. However, most traditional
training methods usually fail to achieve proper parameters of MLP, i.e., weights and biases [38,51].
Recently, we proposed a new GSA variant, SCAA, to discourage its premature convergence problem [61].
It could balance the tradeoff between exploration and exploitation search, and realize stable convergence
of swarm agents. Thus, it shows powerful potential in searching the optimal values of weights and biases
in MLP, which can further improve the discrimination of complex wetland types. When applying SCAA
to MLP, there are three key tasks that need to be addressed, i.e., the agent encoding, fitness function
design, and swarm searching.

(A) Agent encoding strategy

A multilayer perceptron model usually has an input layer, one or more hidden layers, and an
output layer, in which external information is imported into the input layer and results are obtained
from the output layer. Figure 3 depicts a small instance of an MLP neural network with only one
hidden layer, in which the number of neurons in the input layer is equal to two, that in the hidden
layer is equal to three, and that in the output layer is equal to one. In MLP, neurons calculate the sum
of entering data multiplied by a corresponding weight w at the presence of a bias θ; then, an activation
function is applied to the sum and gained outcomes are transferred to the next layer.
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Figure 3. A small example of a multilayer perceptron (MLP) with a 2–3–1 structure.

In this study, the position vector of each agent Xi = [xi1, . . . , xid, . . . , xiD], (i = 1, 2, . . . , NP) in a
swarm is encoded as a possible solution of parameter combinations in MLP. In this way, the network is
represented as a D-dimensional vector containing the possible parameters set of weights and biases,
where D is defined as

D = (nI × nH) + (nH × nO) + nH + nO (6)

where nI, nH and nO are the numbers of neurons in the input, hidden, and output layers,
respectively. Taking Figure 3 as an example, the corresponding encoding strategy is described
as Xi = [w13, w14, w15, w23, w24, w25, w36, w46, w56,θ1,θ2,θ3,θ4].

(B) Fitness function designing

The fitness value is an assessment for the performance of an agent. The agent with the best fitness
value in swarm has a higher probability of finding the optimal solution (i.e., proper MLP parameter
settings). Figure 4 simulates a neuron in MLP, the output of which in each learning period is computed
according to Equations (7) and (8).

U j =
n∑

i=1

w jix j + θ j (7)

O j = f j
(
U j

)
=

1(
1 + e−U j

) (8)

where wji is the connection weight between the ith and jth node, θj is the bias of the jth node,
Uj represents the linear combination of input data, f (.) denotes the activation function, which is a
sigmoid function in this study, and Oj is the obtained output of node j.
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The network neurons perform such computations sequentially until all output results of neurons
in output layer are achieved. Finally, the learning error is calculated as

MSE =
1
P

P∑
k=1

(tk −Ok)

2

(9)

where tk and Ok denote the desired and actual outcomes of the MLP network, respectively,
and P represents the quantity of neurons in the output layer.

The mean-square error (MSE) value is a measure of the accuracy of an MLP neural network. If an
agent in swarm has a smaller MSE value, the weight and bias settings represented by it are more likely
better. Hence, in this paper, the fitness function is designed as

f iti = MSE(Xi) (10)

(C) Swarm search strategy

In SCAA, the gravitational constant attenuation factor alpha (α), which takes an essential place in
determining the gravitational force value, is dynamically adjusted by the adaptive alpha adjusting
strategy and stability-based boundary constraint strategy. Therein, the evolutionary state of each agent
in swarm is firstly evaluated and then utilized as feedback information to adaptively alter parameter
α. In addition, a boundary constraint for α is developed on the basis of GSA stability conditions to
control the α value for the agents’ stable trajectories. In this context, the gravitational force is adaptively
changed to achieve a better position vector of each agent. Figure 5 shows the flowchart of the swarm
search strategy. The flowchart starts with defining the structure of the MLP, which includes the number
of hidden layers and the quantity of neurons in each layer, to decide the agent vectors in SCAA.
After that, the parameters of MLP are updated through the SCAA swarm search scheme, which is
explained as follows:Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 24 
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Step 1: Initialize the population. Randomly initialize swarm agent vectors X in accordance with
the following equation:

X = rand(NP, D) (11)

where rand () could generate a series of random numbers in search space.
Step 2: Calculate the fitness value, i.e., the learning error of the MLP network encoded by the

corresponding agent, using Equations (9) and (10).
Step 3: Use the stability-constrained adaptive alpha adjust strategy in SCAA to determine the

value of parameter alpha for each agent.
Step 4: Calculate the gravitational force exerted on each agent according to its fitness value and

parameter alpha.
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Step 5: Update agent vectors. In this context, the new agent vector represents the updated settings
of weights and biases in the MLP network.

Step 6: Exit the loop if the terminal condition is met and output the agent vector with the best
fitness value, i.e., the optimal settings of weights and biases in MLP. Otherwise, go to step 2.

3. Experimental Results and Analysis

To investigate the performance of the proposed framework for coastal wetland classification,
two important coastal wetlands in Shandong Province of eastern China were selected as study sites as
shown in Figure 6 and introduced in Section 3.1. The detailed experimental settings are given Section 3.2.
The classification accuracy of the SCAA_MLP for the two coastal wetlands is assessed through visual
inspection and quantitative comparisons as presented in Section 3.3. In Section 3.4, we designed an
experiment to evaluate the importance of EMAP spatial features in wetland discrimination.
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3.1. Study Areas

The first coastal wetland is the Jiaozhou Bay wetland (35◦58′–36◦18′ north (N), 120◦04′–120◦23′

east (E)) situated on the southern coast of Shandong Peninsula and surrounded by a developing urban
zone. Jiaozhou Bay is a semi-enclosed bay and opens an export to the Yellow Sea in the southeast
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direction. It has a prominent monsoon climate with 775.6 mm of mean annual precipitation and a
12.2 ◦C average annual temperature. More than 10 rivers and their tributaries, in which the largest
one is Dagu River, run through this wetland region. One of the biggest ports in China, Qingdao
Port, is posited in the eastern area. Jiaozhou Bay wetland supplies the breeding lands for various
animals and plants, taking an important position for sea transportation, port construction, and the
tourism industry [71]. However, Jiaozhou Bay wetland was gradually changed under anthropogenic
activities because of the fast development of aquaculture, fish farming, transportation, and the tourism
industry [1].

The second study site is the Yellow River Delta (YRD) wetland (37◦33′–38◦15′ N, 118◦33′–119◦22′

E). YRD wetland is located in the middle of the Bohai and Laizhou gulf, Dongying city in Shandong
province. It is in the monsoon climate zone with 640 mm of mean annual precipitation, a 11.9 ◦C
average annual temperature, and 1962 mm of average annual evaporation [72]. The adopted wetland
scene in this work begins from Yuwa and ends at Songchunrong river in the south and Tiaohekou in
the north. In recent years, two natural reserves, called Southern Nature Reserve (SNR) and Northern
Nature Reserve (NNR), were authenticated by the national nature reserve and protection program
in YRD wetland. Likewise, YRD wetland plays a vital role in breeding and wintering for many
internationally considered rare water birds and fishes [73].

Sentinel datasets can be obtained from Copernicus Open Access Hub (https://scihub.copernicus.eu/).
Two Sentinel-2A MSI L1C images used in this study were collected on 18 December 2017 (Jiaozhou Bay
wetland) and 12 May 2016 (YRD wetland) under clear weather conditions. The data contained 13 bands
ranging from the visible and near infrared (NIR) to the short-wavelength infrared (SWIR) spectral zone
with various spatial resolutions, in which the resolution of three visible light (VIS) bands and one NIR
band is 10 m, that of two SWIR and four vegetation red edge bands is 20 m, and that of one cirrus SWIR,
one coastal aerosol, and one water vapor band is 60m. The directly acquired imagery from Copernicus
Open Access Hub was Sentinel-2 level 1C data identified as a standard product of top-of-atmosphere
reflectance values (TOA). Thus, in this paper, for the pre-processing step, particular atmospheric
correction was required to transform TOA reflectance into corrected bottom-of-atmosphere reflectance
values (BOA). Therefore, ESA’s Sen2Cor software was employed which could correct the Level 1C data
in atmosphere, cirrus, and terrain to generate a Level 2A product. This operation would remove the
10th band from the dataset. After that, the remaining 12 bands in the imagery were resampled to 10 m
via a bicubic method. Among these bands, although the resolutions of band 1 and band 9 were lower,
they showed their efficiency in classification tasks, such as water body extraction [74], tropical coral
reef mapping [75], and building shadow extraction [76].

The two study areas are surrounded by some downtown districts and suburban areas, in which
wetland types are distributed sparsely and encompassed by built-up areas and vegetation. For the
Jiaozhou Bay wetland and YRD wetland, seven wetland covers were found; they were identified as
sea, tidal flat, river, breeding aquatics, saltern, reservoir pond, and vegetation. One more wetland
type, paddy field, exists in the YRD study area. For reducing the computational cost in the further
processing, the wetland mask was built manually with the reference of Google Earth and a field land
cover survey to mask out the dry land regions in ENVI 5.3 software. For the selection of samples,
to keep the correctness of samples, only identified land covers were adopted [36]. The samples with
mixed pixels, such as in the sea boundaries, riverbanks, and sparse vegetation areas, were not taken
into consideration. Moreover, for each site, both the Sentinel-2 imagery and the high-resolution images
in Google Earth were utilized in the process of sample selection to further ensure the accuracy of the
samples. The number of samples chosen for each wetland type is listed in Table 1.

https://scihub.copernicus.eu/
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Table 1. Sample size for each wetland type in two study sites.

Jiaozhou Bay Wetland Yellow River Delta Wetland
Wetland type Size (pixels) Wetland type Size (pixels)
Sea 472,003 Sea 1,785,869
Tidal flat 79,122 Tidal flat 673,730
River 28,406 River 311,428
Breeding aquatics 80,197 Breeding aquatics 503,059
Saltern 32,277 Saltern 104,574
Reservoir pond 68,683 Reservoir pond 376,751
Vegetation 6920 Paddy field 146,753

Vegetation 339,302

3.2. Design of Experiments

To evaluate the performance of SCAA_MLP, four advanced machine learning classifiers,
SVM [33], RF [35], BP-trained MLP (denoted as BP_MLP) [36], and GSA-optimized MLP (denoted as
GSA_MLP) [53], were applied in the wetland classification with the same input features for thorough
comparison. As for the parameter settings, in RF, the value of Ntree was set to 500 for stable errors [77],
which was commonly used in majority of the studies [35]. For BP_MLP, we tested the architecture with
one, two, and four hidden layers and a varying number of {4, 8, 10, 12, 16, 20, 24, 30} nodes on the
image of Jiaozhou Bay wetland. The corresponding overall accuracy (OA) and kappa coefficients (κ)
were adopted to quantitatively estimate the setting of parameters. When the number of hidden layers
was set to 1, the accuracy of BP_MLP could not be improved obviously with the number of neurons
increased and could not achieve lower accuracy (OA of around 68%). When setting two hidden layers,
its OA increased with the number of nodes rising from four to 30, whereas it kept stable and did not
improve (OA of around 71%) with the number of nodes more than 16. Meanwhile, the time cost grew
with the increase in the number of layers. For the BP_MLP with four hidden layers, when the numbers
of nodes in the first three layers were set to 30, 30, and 30, and the number of nodes in the fourth layer
was larger than 10, the accuracy was stable (with OA equal to 72%). Due to more nodes requiring more
computation time, for balancing the efficiency and accuracy, four hidden layers with 30, 30, 30, and 10
nodes in each layer were adopted. Following the recommendations in Reference [32], the structures of
GSA_MLP and SCAA_MLP neural networks were tested, and the optimal structure was found to have
two hidden layers with 20 neurons in each layer. The parameter configurations of these classifiers are
summarized in Table 2.

According to Section 2.1, the EMAP features with four attributes were constructed containing
1104 filtered images to represent the spatial information of the Sentinel-2 dataset. To realize the
dimensionality reduction of EMAPs, the information gain-based method [78] was used for feature
selection, and a ranked list was generated to show superior attributes. This step was conducted using
the well-known software Weka [68]. Consequently, the dimensionality of EMAPs was reduced from
1104 to 60.

For each run, the samples were randomly divided into three parts: 40% for training, 10% for
validation, and 50% for testing, to ensure no overlapping between these data. The same samples
were employed for all five classification methods. In order to quantitatively estimate the classification
accuracy, the confusion matrix was calculated according to the testing data and classification results of
the five classifiers in each scene. Based on the error matrix, we could obtain the overall accuracy (OA)
and kappa coefficients (κ). The overall accuracy describes the proportion of the number of correctly
identified points in the total testing data. The kappa value is defined as the percentage of accurately
classified testing points after removing random agreement. For a fair comparison, all involved methods
were carried out using Matlab 2017b on a computer with an Intel (R) Xeon (R) central processing unit
(CPU) (1.70 GHz) and 32 GB of memory.
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Table 2. Parameter configurations of different classifiers. SVM—support vector machine; RF—random
forest; BP—backpropagation; MLP—multilayer perceptron; GSA—gravitational search algorithm;
SCAA—stability-constrained adaptive alpha.

Classifier Parameter Description Parameter Value

SVMs
Kernel type Gaussian radial basis function (RBF)
Gamma in the kernel function 0.143
Penalty parameter 100

RF
Number of decision trees 500
Number of considered variables Square root of the number of input features

BP_MLP

Number of hidden layers 4
Number of nodes in the first three hidden layers 30
Number of neurons in the fourth hidden layers 10
Learning rate 0.001
Training epochs 1000

GSA_MLP

Number of hidden layers 2
Number of nodes in the hidden layers 20
Training epochs 1000
Gravitational constant attenuation factor alpha 7
Gravitational constant 50

SCAA_MLP

Number of hidden layers 2
Number of nodes in the hidden layers 20
Training epochs 1000
Gravitational constant 50
Limit value lp 4
The maximum of attenuation factor alpha 7

3.3. Classification Results and Analysis

In this section, the performance of SCAA_MLP and other comparative classifiers was tested on
two coastal wetland study sites. Note that all classifiers were input the same features (12 spectral
features and 60 EMAP spatial features). To provide a better visualization, the best results among
different classifiers in quantitative comparison are marked in bold face, whilst correct or incorrect parts
in classification maps are highlighted in black or magenta circles, respectively.

(1) Study site 1: Jiaozhou Bay wetland

The quantitative classification accuracy assessment in the first study scene is summarized in Table 3.
As shown, the proposed SCAA_MLP classifier achieved desirable classification results compared with
other methods. To be specific, the SCAA_MLP gained the highest overall accuracy (95.09%) and kappa
coefficient (κ) value (0.9171), dramatically higher than the MLP variants, BP_MLP (OA of 72.16%
and κ of 0.5844) and the GSA_MLP (OA of 73.4935% and κ of 0.5438). This result was also superior
when compared with other machine learning approaches, including SVM (84.51% OA and κ of 0.6922)
and RF (94.51% OA and κ of 0.8905). Its promising performance was further validated through the
per-class classification accuracy. When compared with BP_MLP, the classification accuracies of river
and breeding aquatics grew dramatically by 48.7% and 102%, respectively. A slight rise of 36.3% was
obtained for the sea classification. Other wetland types (tidal flat, saltern, reservoir pond, vegetation,
etc.) marginally increased with respect to mapping precision (less than 1.5%). This is mainly because
the effective search strategy in SCAA achieves better weight and bias settings in MLP, which facilitates
the discrimination of complex nonlinear wetland features. In comparison with other machine learning
methods, the higher classification results of the proposed SCAA_MLP were validated in the classes of
breeding aquatics, reservoir pond, and vegetation, with a per-class mapping accuracy of 94.39%, 95.61%,
and 98.06%, respectively. As for sea, river, and saltern, however, SCAA_MLP was inferior to SVM and
RF, with a slight accuracy decrease. In general, the quantitative classification results demonstrated that
SCAA_MLP achieved a superior performance for complex Jiaozhou Bay wetland types.
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The effectiveness of SCAA_MLP was also validated by visual inspection. To provide a useful
visualization, the classification images of Jiaozhou Bay wetland obtained by different classifiers are
presented in Figure 7. As a whole, SCAA_MLP obtained the smoothest visual results with accurate
boundary information and high geometric fidelity compared with its peers. Most importantly, as shown
in Figure 7f, the wetland types with similar spectral information (e.g., river, reservoir pond, sea, etc.)
and land covers with great within-object variation (e.g., breeding aquatics and dry parts in river
channels due to the variation in water volume and vegetation density) were effectively characterized.
With regard to other classifiers, in the classification map obtained by SVM and GSA_MLP (Figure 7b,e),
the linearly shaped features like river were misclassified as sea and reservoir pond, whilst simple
wetland categories like reservoir pond were wrongly identified as sea (see the regions marked by
magenta circles). For the highly complex land covers with great intra-class heterogeneity, for example,
some parts of breeding aquatics, they were wrongly distinguished as river by BP_MLP and GSA_MLP.
In addition, in the dry river channel, SVM, RF, BP_MLP, and GSA_MLP failed to capture the sparse
vegetation and misclassified the detailed thin river. However, all classifiers performed worse along
the edges between sea and tidal flat. Some areas in tidal flat were recognized as breeding aquatics by
SVM, RF, and BP_MLP (marked by magenta circles in Figure 7b–d), while parts of sea regions were
classified as reservoir pond by all methods, especially BP_MLP and GSA_MLP. This is mainly due to
the high spectral and spatial confusion in this area, which lacks precise training samples for classifiers
due to the challenges in visual interpretation. Fortunately, most features were correctly distinguished
by SCAA_MLP without losing useful information as depicted in Figure 7f. These results are consistent
with the quantitative classification accuracy evaluation.
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Table 3. The classification accuracy of different classifiers in Jiaozhou Bay wetland. OA—overall accuracy.

Type SVM RF BP_MLP GSA_MLP SCAA_MLP

Sea 99.96 97.6734 69.75 86.07 95.07
Tidal flat 97.22 90.1495 93.33 75.02 95.92

River 4.57 95.0683 60.55 59.82 90.40
Breeding aquatics 73.33 80.3641 46.70 44.48 94.39

Saltern 66.30 89.2085 91.02 98.07 97.53
Reservoir pond 12.99 91.6535 89.29 9.80 95.61

Vegetation 62.76 88.7848 97.78 83.29 98.06

OA 84.51 94.51 72.16 73.4935 95.09
κ 0.6922 0.8905 0.5844 0.5438 0.9171

(2) Study site 2: Yellow River Delta wetland

The quantitative classification accuracy of different classifiers on the second study site is illustrated
in Table 4. From the results, it is obvious that the highest mapping precision was also obtained
by SCAA_MLP with an OA of 95.81% and a kappa coefficient (κ) value of 0.9450, markedly higher
than SVM (OA of 67.09% and κ of 0.5326), BP_MLP (OA of 76.82% with κ of 0.6997), and GSA_MLP
(OA of 82.19% and κ of 0.7624). The superiority of SCAA_MLP was further demonstrated by the
per-classification accuracy. When compared with BP_MLP, the classification accuracies of breeding
aquatics, reservoir pond, sea, tidal flat, saltern, and river were dramatically increased by 64.14%,
33.06%, 15.03%, 14.09%, 11.22%, and 9.09%, respectively. Such a rise in classification accuracy can
also be validated in Figure 8d,f. The breeding aquatics in YRD wetland have higher within-class
variation due to the water volume difference and bare wet soil existence. Despite the utilization of
EMAP features, BP_MLP failed to capture breeding aquatics correctly and mostly misclassified them
as tidal flat (marked in magenta circles). Due to the saline alkali areas in tidal flat, these regions
were wrong recognized as saltern by BP_MLP. Furthermore, there was considerable misclassification
between reservoir pond, sea, and river as shown by magenta circles in Figure 8d. This is mainly
because the BP algorithm is easily trapped into local optima, which causes MLP to lack the capacity
in processing complex spectral and spatial information of objects. From Table 4, the employment of
GSA could facilitate this issue to some extent, in which the mapping accuracy of most wetland types
were moderately increased. However, GSA_MLP failed to capture the linear-shaped river features
as depicted in Figure 8e. In contrast, since SCAA further improved the optimization performance of
GSA, these undesirable visual effects and misclassifications were rectified significantly. From Figure 8,
we can see that SCAA_MLP also achieved the smoothest classification map on YRD wetland with
higher geometric fidelity and more precise edges between classes, which confirms its universality on
complex wetland mapping. Different from the other approaches, SVM also performed worse in the
second experiment despite various spatial and spectral features being used.

Table 4. The classification accuracy of different classifiers in Yellow River Delta wetland.

Type SVM RF BP_MLP GSA_MLP SCAA_MLP

Sea 90.20 97.40 83.22 96.05 97.95
Tidal flat 55.25 93.33 83.56 89.34 97.27
River 77.06 91.91 80.30 0 88.33
Breeding aquatics 3.70 88.08 32.54 59.03 90.74
Saltern 41.10 90.30 81.43 87.57 91.72
Reservoir pond 28.66 92.11 62.38 80.61 93.19
Paddy field 84.69 97.79 96.37 95.80 98.62
Vegetation 95.56 98.50 98.35 98.60 98.87

OA 67.09 94.73 76.82 82.19 95.81
κ 0.5326 0.9320 0.6997 0.7624 0.9450
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Figure 8. Classification results in Yellow River Delta wetland, with (a) an image subset (NIR, G,
and B bands only), (b) SVM classification, (c) RF classification, (d) MLP classification, (e) GSA_MLP
classification, and (f) SCAA_MLP classification.

3.4. Effectiveness of EMAPs

For assessing the effectiveness of EMAP features, two tests were carried out using datasets in
Jiaozhou Bay wetland and YRD wetland. Specifically, the significance of spatial features produced
by different attribute profiles was tested using SCAA_MLP with spectral information of 12 bands
in Sentinel-2 imagery and spectral–spatial features generated by adding EAPs, EAPa, EAPd, EAPi,
and EMAPs. The results on two study sites including per-class classification accuracy, overall accuracy
(OA), and kappa coefficient (κ) are reported in Tables 5 and 6, respectively. The best results are
highlighted in bold face.

Table 5. Classification accuracy obtained using spectral and different spectral–spatial features (Jiaozhou
Bay wetland). EAP—extended attribute profile; EMAP—extended multi-attribute profile.

Type Spectral
Features

Spectral
EAPa

Spectral
EAPs

Spectral
EAPd

Spectral
EAPi

Spectral
EMAPs

Sea 91.05 92.78 92.14 93.53 95.00 95.07
Tidal flat 94.28 96.15 93.36 96.53 93.48 95.92
River 77.67 87.61 76.24 87.28 85.52 90.40
Breeding aquatics 75.55 83.89 67.89 94.10 81.92 94.39
Saltern 96.23 96.69 96.57 98.24 97.44 97.53
Reservoir pond 86.32 88.05 87.96 90.91 88.53 95.61
Vegetation 94.95 96.63 98.49 94.69 93.55 98.06

OA 89.13 91.79 89.06 93.64 92.69 95.09
κ 0.8197 0.8630 0.8181 0.8935 0.8766 0.9171
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Table 6. Classification accuracy obtained by using spectral and different spectral–spatial features
(Yellow River Delta (YRD) wetland).

Type Spectral
Features

Spectral
EAPa

Spectral
EAPs

Spectral
EAPd

Spectral
EAPi

Spectral
EMAPs

Sea 91.68 96.93 95.04 96.91 96.30 97.95
Tidal flat 95.16 97.36 95.60 94.66 98.31 97.27
River 89.96 88.80 89.57 88.19 94.33 88.33
Breeding aquatics 85.61 93.80 85.33 93.66 92.17 90.74
Saltern 92.04 94.27 95.99 96.50 92.57 91.72
Reservoir pond 90.23 95.22 88.42 96.67 87.67 93.19
Paddy field 96.36 98.83 97.65 98.90 98.84 98.62
Vegetation 98.79 99.16 99.41 99.36 99.20 98.87

OA 91.99 95.55 93.45 95.76 95.45 95.81
κ 0.8963 0.9491 0.9147 0.9446 0.9405 0.9450

With respect to the Jiaozhou Bay wetland, as shown in Table 5, it is clear that combining spatial
information from EMAPs with original spectral information largely improved the classification accuracy,
which was higher than only using spectral features. Specifically, the EAPa features improved the OA to
91.79% and κ to 0.8630. This may come from the area attributes extracted based on the spatial resolution
information of Sentinel-2 images, which can better express the area information of ground objects in
different resolution bands. Similar results were gained by integrating the EAPi measures. Much higher
accuracy was reported by adding the EAPd information, achieving an overall accuracy of 93.64%
with a kappa value of 0.8935. However, the utilization of feature EAPs degraded the classification
performance. Thus, for mapping Jiaozhou Bay wetland, EAPs was abandoned in this paper and the
EMAP consisting of EAPa, EAPd, and EAPi was employed as the spatial information. As shown
in Table 5, combining these measures with the original spectral layers obtained the best accuracy,
achieving an OA of 95.09% with κ of 0.9171. From the per-class classification accuracy, it is obvious
that EAPd (i.e., the attribute diagonal length of bounding box) was effective in the identification of
squarely shaped objects, such as breeding aquatics, saltern, and reservoir pond. For the linear river,
the attribute area contributed more than other attributes.

The classification maps of the Jiaozhou Bay wetland obtained by SCAA_MLP adopting 12 spectral
features and spectral EMAP spatial features are depicted in Figure 9b,c, respectively. Based on the
visual inspection, it can clearly be seen that, when replying purely upon spectral features, the mapping
results consisted of undesirable noise (highlighted in magenta circles), especially for the mapping of
wetland types with higher within-object variation (e.g., river) and the boundary areas. At the same time,
the classes with similar spectral characteristics (e.g., river, reservoir pond, breeding aquatics, sea etc.)
had a higher tendency to be misclassified (magenta circles in Figure 9b). For instance, some edge
regions along the sea and several parts in wide river area were wrongly distinguished as reservoir pond,
while breeding aquatics and dry river channel areas were not accurately mapped. On the contrary,
with the addition of the EMAP spatial features, as represented in Figure 9c, certain improvements were
achieved in both spectral and spatial pattern differentiation, which exhibited smoothed visual effects
with little noise. This is mainly due to the fact that EMAPs can preserve the geometrical features of
objects and attenuate unimportant details. Thus, it can suppress noise and keep precise boundaries.
In addition, the utilization of different attributes and multilevel operators made the best of spatial
characteristics of wetland regions, which realized the correct discrimination of objects with similar
spectral features.

As for the YRD wetland, from Table 6, it is clear that the spectral–spatial based classification via
adding different EAPs achieved higher accuracy at all points than only employing spectral information.
Specifically, SCAA_MLP achieved a worse overall accuracy of 91.99% merely considering 12 original
spectral features. However, when utilizing the spectral–spatial features by adding EAPa, EAPs, EAPd,
EAPi, and EMAPs, its OA was 95.55%, 93.45%, 95.76%, 95.45%, and 95.81%, respectively. Similar to the
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first experiment, it is clear that, amongst the four constructed EAPs, using EAPd allowed achieving
higher OA, especially in the discrimination of saltern, reservoir pond, and paddy field. Thus, for square
regions in the two study sites, the attribute diagonal length of bounding box can provide better spatial
description than other attributes. By contrast, in the YRD wetland study area, EAPi (i.e., moment of
inertia attribute) performed best for the classification of linearly shaped objects, like river.
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As for the visualization shown in Figure 10, similar to the test in Jiaozhou Bay wetland,
the employment of EMAP features enabled SCAA achieving smoother wetland classification with less
noise. For example, the small speckles in sea and tidal flat (magenta circles in Figure 10b) were much
reduced in Figure 10c. Additionally, the misclassifications between sea, river, and reservoir pond,
and between saltern and tidal flat (highlighted by magenta circles), which appeared in Figure 10b,
were revised accordingly.
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The test outcomes illustrated that EMAPs were effective in relieving the between-class homogeneity
and within-class heterogeneity for complex wetland classification, with the EAPa, EAPd, and EAPi
measures contributing more. More importantly, the combination of the selected EAPs with the spectral
layers achieved superior results compared to combining any single EAP measure, which more fully
described the spatial features of wetlands.

4. Discussion

Coastal wetland types in Setinel-2 remotely sensed imagery are highly complex with low
within-class homogeneity and between-class heterogeneity. Merely relying on the spectral characteristics
of wetlands results in massive misclassification and noise. As depicted in Figures 9b and 10b,
confusion appeared among spectral similar objects like river, reservoir pond, breeding aquatics,
and sea, while severe noise existed in the heterogeneous wetland types like river and breeding
aquatics. The boundary information between different wetland objects was also weakened with
the blurred classification. These issues demonstrate the need for using effective spatial features of
coastal wetlands. The proposed method in this paper incorporates EMAPs as a spatial characterization
tool. The utilization of different attributes and dense filter threshold settings provides multilevel
spatial description modeling various structural information in the irregularly shaped wetland types.
Moreover, the attribute filter operation can preserve the geometrical characteristics of objects and
attenuate unimportant details, for they do not need to predefine image structures. In this context,
the utilization of EMAPs is helpful to decrease intra-class variability, improve inter-class variability,
and delineate boundaries. This superiority was validated by the quantitative analysis (Tables 5 and 6)
and visual inspection (Figures 9c and 10c), whereby spectrally similar wetland types (e.g., river, reservoir
pond, sea, etc.) and greatly heterogeneous objects (e.g., breeding aquatics, sparse vegetation, and dry
river channel areas) were correctly classified with less noise and accurate boundaries.

In MLP neural networks, the input of each neuron is firstly weighted and bias is added, and then it
is handled by a nonlinear activation function. During this process, the performance of MLP significantly
relies on the parameter weight and bias settings. However, traditional training approaches tend to fall
into local optima and fail to obtain the optimal values for weights and biases [38,47]. Such limitations
usually cause undesirable classification results; for instance, misclassification and confusion between
the river, reservoir pond, breeding aquatics, and sea that are spectrally similar appeared in the coastal
wetland classification maps of BP_MLP and GSA_MLP despite the employment of EMAP spatial
features. Even for those correctly identified objects, some noise still existed, as presented in Figure 7d,e
and Figure 8d,e. In this work, the intelligent optimization algorithm SCAA, which achieves superior
balance between exploration and exploitation search to escape from local optima, was used to effectively
set proper values of weights and biases in MLP. The classification results in Tables 3 and 4 suggest that
SCAA_MLP achieved desirable results in terms of OA and per-class classification accuracy. In addition,
from Figures 7f and 8f, SCAA_MLP achieved the smoothest classification maps on Jiaozhou Bay
wetland and YRD wetland with precise boundary information and high geometric fidelity.

From the classification maps in Section 4, it is clear that most coastal wetland types in Jiaozhou
Bay and Yellow River Delta can be roughly divided into natural wetlands and artificial wetlands.
In Jiaozhou Bay, the artificial wetlands, like some reservoir ponds, breeding aquatics, and salterns,
are mainly found in the northern and northwestern regions with regular shapes. In the Yellow River
Delta, artificial wetland types are mainly distributed on the northern, northeastern, and eastern coasts,
in which paddy fields are identified in northern and central parts. Moreover, the Yellow River Delta
coastal wetlands are characterized by extensive salinization, especially in the tidal flat, which leads
to the misclassification with saltern. These factors indicate the strong relationship between regional
industrial and agricultural development and land cover distribution in the coastal zone. As a special
ecosystem, coastal wetland is vulnerable to alteration and shrinkage due to natural fluctuations
and external disturbance. In a future study, a multitemporal remotely sensed dataset on Jiaozhou
Bay wetland and YRD wetland will be utilized to analyze the dynamic change of different wetland
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types. Furthermore, the relative significance of natural and anthropogenic variables in the observed
wetland changes will be assessed and evaluated to reveal the impact of environmental conditions on
wetland change.

5. Conclusions

In this research, we proposed a novel spectral–spatial classification framework for coastal wetland
using Sentinel-2 remotely sensed imagery, in which morphological attribute profiles (APs) were
extracted and a multilayer perceptron (MLP) classifier was optimized by SCAA. This framework aimed
to identify the different coastal wetland classes with high within-class variability and low between-class
disparity. For comprehensively employing spectral and spatial information, large EMAPs were built
considering four different attributes, area, standard deviation, moment of inertia, and diagonal length
of bounding box, with their filter thresholds sampled in small intervals from a wide range based on the
characteristics of wetland types on Sentinel-2 imagery. These features can provide multilevel spatial
descriptions of irregularly shaped wetland objects and they can decrease intra-class variability via
attribute filter operation. To process the complex spectral and spatial information of coastal wetlands,
a new MLP classifier was developed, in which three tasks including an agent encoding strategy,
a fitness function designing, and a SCAA swarm search scheme were utilized. By using the superiority
of SCAA in balancing exploration and exploitation, the optimal values of parameter weight and bias in
MLP were obtained. Experimental results on the Sentinel-2 MSI images of Jiaozhou Bay wetland and
Yellow River Delta wetland confirmed the effectiveness of the proposed method. It is anticipated that
this work could boost the application of Sentinel-2 imagery in global coastal wetland mapping and
monitoring, and accordingly promote the research of coastal wetland ecosystems.
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