1,441 research outputs found

    The Parameterised Complexity of List Problems on Graphs of Bounded Treewidth

    Get PDF
    We consider the parameterised complexity of several list problems on graphs, with parameter treewidth or pathwidth. In particular, we show that List Edge Chromatic Number and List Total Chromatic Number are fixed parameter tractable, parameterised by treewidth, whereas List Hamilton Path is W[1]-hard, even parameterised by pathwidth. These results resolve two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen (2011).Comment: Author final version, to appear in Information and Computation. Changes from previous version include improved literature references and restructured proof in Section

    Tree-chromatic number is not equal to path-chromatic number

    Full text link
    For a graph GG and a tree-decomposition (T,B)(T, \mathcal{B}) of GG, the chromatic number of (T,B)(T, \mathcal{B}) is the maximum of χ(G[B])\chi(G[B]), taken over all bags B∈BB \in \mathcal{B}. The tree-chromatic number of GG is the minimum chromatic number of all tree-decompositions (T,B)(T, \mathcal{B}) of GG. The path-chromatic number of GG is defined analogously. In this paper, we introduce an operation that always increases the path-chromatic number of a graph. As an easy corollary of our construction, we obtain an infinite family of graphs whose path-chromatic number and tree-chromatic number are different. This settles a question of Seymour. Our results also imply that the path-chromatic numbers of the Mycielski graphs are unbounded.Comment: 11 pages, 0 figure

    The structure of graphs not admitting a fixed immersion

    Get PDF
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    The structure of graphs not admitting a fixed immersion

    Full text link
    We present an easy structure theorem for graphs which do not admit an immersion of the complete graph. The theorem motivates the definition of a variation of tree decompositions based on edge cuts instead of vertex cuts which we call tree-cut decompositions. We give a definition for the width of tree-cut decompositions, and using this definition along with the structure theorem for excluded clique immersions, we prove that every graph either has bounded tree-cut width or admits an immersion of a large wall

    A bandwidth theorem for approximate decompositions

    Get PDF
    We provide a degree condition on a regular nn-vertex graph GG which ensures the existence of a near optimal packing of any family H\mathcal H of bounded degree nn-vertex kk-chromatic separable graphs into GG. In general, this degree condition is best possible. Here a graph is separable if it has a sublinear separator whose removal results in a set of components of sublinear size. Equivalently, the separability condition can be replaced by that of having small bandwidth. Thus our result can be viewed as a version of the bandwidth theorem of B\"ottcher, Schacht and Taraz in the setting of approximate decompositions. More precisely, let δk\delta_k be the infimum over all δ≥1/2\delta\ge 1/2 ensuring an approximate KkK_k-decomposition of any sufficiently large regular nn-vertex graph GG of degree at least δn\delta n. Now suppose that GG is an nn-vertex graph which is close to rr-regular for some r≥(δk+o(1))nr \ge (\delta_k+o(1))n and suppose that H1,…,HtH_1,\dots,H_t is a sequence of bounded degree nn-vertex kk-chromatic separable graphs with ∑ie(Hi)≤(1−o(1))e(G)\sum_i e(H_i) \le (1-o(1))e(G). We show that there is an edge-disjoint packing of H1,…,HtH_1,\dots,H_t into GG. If the HiH_i are bipartite, then r≥(1/2+o(1))nr\geq (1/2+o(1))n is sufficient. In particular, this yields an approximate version of the tree packing conjecture in the setting of regular host graphs GG of high degree. Similarly, our result implies approximate versions of the Oberwolfach problem, the Alspach problem and the existence of resolvable designs in the setting of regular host graphs of high degree.Comment: Final version, to appear in the Proceedings of the London Mathematical Societ

    A linear-time algorithm for the strong chromatic index of Halin graphs

    Full text link
    We show that there exists a linear-time algorithm that computes the strong chromatic index of Halin graphs.Comment: 7 page

    Hyperoctahedral Eulerian Idempotents, Hodge Decompositions, and Signed Graph Coloring Complexes

    Full text link
    Phil Hanlon proved that the coefficients of the chromatic polynomial of a graph G are equal (up to sign) to the dimensions of the summands in a Hodge-type decomposition of the top homology of the coloring complex for G. We prove a type B analogue of this result for chromatic polynomials of signed graphs using hyperoctahedral Eulerian idempotents
    • …
    corecore