B Universit
of GlasgowY

Meeks, K., and Scott, A. (2016) The parameterised complexity of list
problems on graphs of bounded treewidth. Information and Computation,
251, pp. 91-103. (d0i:10.1016/j.ic.2016.08.001)

This is the author’s final accepted version.

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/122505/

Deposited on: 05 August 2016

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/131023/
http://eprints.gla.ac.uk/131023/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

The parameterised complexity of list problems on graphs of
bounded treewidth

Kitty Meeks* and Alexander Scott!
Mathematical Institute, University of Oxford, UK

Abstract

We consider the parameterised complexity of several list problems on graphs, with parameter
treewidth or pathwidth. In particular, we show that LisT EDGE CHROMATIC NUMBER and
LisT ToTrAL CHROMATIC NUMBER are fixed parameter tractable, parameterised by treewidth,
whereas L1sST HAMILTON PATH is W[1]-hard, even parameterised by pathwidth. These results
resolve two open questions of Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Szeider and
Thomassen (2011).

1 Introduction

Many graph problems that are know to be NP-hard in general are fixed parameter tractable when
parameterised by the treewidth k of the graph, that is they can be solved in time f(k) - n°® for
some function f. Often there even exists a linear-time algorithm to solve the problem on graphs of
fixed treewidth [2, 6, 10, 28].

This is the case for a number of graph colouring problems. Although it is NP-hard to determine
whether an arbitrary graph is 3-colourable, the chromatic number of a graph of treewidth at most
k (where k is a fixed constant) can be computed in linear time (Arnborg and Proskurowski [2]).
Similarly, while it is NP-hard to determine the edge-chromatic number of cubic graphs (Holyer [19])
and more generally d-regular graphs for any d > 3 (Leven and Galil [24]), this problem can again
be solved in linear time on graphs of bounded treewidth (Zhou, Nakano and Nishizeki [32]). The
pattern is the same for the total colouring problem: this is NP-hard even for regular bipartite graphs
(McDiarmid and Sdnchez-Arroyo [27]) but there exists a linear-time algorithm to solve the problem
on graphs of bounded treewidth (Isobe, Zhou and Nishizeki [20]).

However, list versions of such problems cannot always be solved so efficiently on graphs of bounded
treewidth. The well-known list variant of vertex colouring is clearly NP-hard in general (as it gener-
alises the standard colouring problem), but can also be solved in polynomial time on graphs of fixed
treewidth &, and even in linear time on such graphs if the number of colours is bounded (Jansen
and Scheffler [21]). However, in contrast with the linearity result for CHROMATIC NUMBER, it has
been shown that when the number of colours is unbounded LiST COLOURING is W/[1]-hard and
so not (up to certain complexity theoretic assumptions) fixed parameter tractable (Fellows, Fomin,
Lokshtanov, Rosamond, Saurabh, Szeider and Thomassen [14]). The list variants of edge-colouring
and total colouring are harder still on graphs of bounded treewidth: both problems are NP-hard
on series-parallel graphs (Zhou, Matsuo and Nishizeki [31]), which have treewidth at most two, and

*Present address: School of Mathematics and Statistics, University of Glasgow; Email:
kitty.meeks@glasgow.ac.uk; Corresponding author.
t Email: scott@maths.ox.ac.uk

list edge-colouring is also NP-hard on outerplanar graphs (Marx [26]), another class of graphs with
treewidth at most two.

Perhaps surprisingly, however, it can be easier to determine the minimum length of lists required
to guarantee the existence of a proper list colouring for a graph G than to determine whether G
admits a proper colouring with a particular set of lists. Alongside the negative result about the
complexity of LIST COLOURING, in [14] the authors also use Courcelle’s theorem [10] to prove the
following result.

Theorem 1.1 ([14]). The LisT CHROMATIC NUMBER problem, parameterised by the treewidth bound
t, 1s fired-parameter tractable, and solvable in linear time for any fixed t.

In Section 2 we show that the same pattern extends to the list chromatic number problems for
edge-colouring and total colouring: although these problems are both NP-hard on graphs of treewidth
two, it is possible to determine the list edge chromatic number and list total chromatic number of
graphs of bounded treewidth in linear time, answering an open question from [14].

The situation is similar for the problem of determining whether a given graph contains a Hamilton
path. HAMILTON PATH is known to be computationally difficult in general, remaining NP-hard when
restricted to planar, cubic, 3-connected graphs (Garey, Johnson and Tarjan [17]) or bipartite graphs
(Krishnamoorthy [23]), but can be solved in linear time on graphs of bounded treewidth (Arnborg
and Proskurowski [2]). In Section 3 we consider a list variant of the problem, and show that it is
unlikely to be fixed parameter tractable, even parameterised by pathwidth, answering another open
question from [14].

In the remainder of this section we define formally the problems whose complexity we consider,
and give some background on the treewidth bound and the theory of parameterised complexity.

1.1 Problems considered

A proper edge-colouring of a graph G is an assignment of colours to the edges of G so that no two
incident edges receive the same colour. If a set £ = {L. : e € E(G)} of lists of permitted colours
is given, a proper list edge-colouring of (G, L) is a proper edge-colouring of G in which each edge e
receives a colour from its list L.. The list edge chromatic number of G, ch’'(G), is the smallest integer
¢ such that, for any assignment of colour lists to the edges of GG in which each list has length at least
¢, there exists a proper list edge-colouring of G. We define the following problem.

List EDGE CHROMATIC NUMBER
Input: A graph G = (V, E).
Question: What is ch'(G)?

A proper total colouring of a graph G = (V| F) is an assignment of colours to the vertices and
edges of GG such that no two adjacent vertices or incident edges have the same colour, and no edge
has the same colour as either of its endpoints. If a set £ = {L, : © € V U E} of lists of permitted
colours is given, a proper list total colouring of (G, L) is a proper total colouring of G in which every
vertex and edge receives a colour from its list. The list total chromatic number of G, chr(G), is the
smallest integer ¢ such that, for any assignment of colour lists to the vertices and edges of G in which
each list has length at least ¢, there exists a proper list total colouring of G. We define the following
problem.

LisT ToTAL CHROMATIC NUMBER
Input: A graph G = (V, F).
Question: What is chr(G)?

We also consider a list version of Hamilton Path, introduced in [14], where each vertex has a list
of permissible positions on the path.

LisT HAMILTON PATH
Input: A graph G = (V, E), and a set of lists £ = {L, C {1,...,|V]} : v € V} of permitted
positions.
Question: Does there exist a path P = P[1]... P[|G|] in G such that, for 1 <i < |G|, we have
1€ Lp[i]?

This introduction of lists to the Hamilton path problem is perhaps most naturally interpreted
as the addition of timing constraints; we illustrate this with the Itinerant Lecturer Problem, which
we define as follows. A professor has recently proved an exciting new result, and plans to spend
n days travelling the country, giving a lecture about his work at a different university each day.
We represent each institution he plans to visit with a vertex; each pair of institutions which can
potentially be visited on consecutive days (the distance not being too great) is connected by an edge.
Each institution also places different restrictions on which days he can visit (perhaps they require
that he comes on the correct day of the week to speak at their regular seminar, or it might be that his
host is away for part of the month) which give rise to the list of permitted positions for each vertex.
The Itinerant Lecturer is then seeking to find a solution to the LisT HAMILTON PATH problem for
this input.

1.2 Treewidth and Pathwidth

We consider the complexity of these problems restricted to graphs of bounded treewidth or pathwidth.
Given a graph G, we say that (T, D) is a tree decomposition of G if T'is a trec and D = {D(t) : t € T'}
is a collection of non-empty subsets of V(G) (or bags), indexed by the nodes of T', satisfying:

L V(G) = Uier D),
2. for every e = uwv € E(G), there exists t € T' such that u,v € D(t),

3. for every v € V, if T'(v) is defined to be the subgraph of T" induced by nodes t with v € D(t),
then T'(v) is connected.

The width of the tree decomposition (T, D) is defined to be max,er |D(t)|—1, and the treewidth of G is
the minimum width over all tree decompositions of G. A path decomposition is a tree decomposition
(P, D) in which the indexing tree is a path, and the pathwidth of G is the minimum width over all
path decompositions of G.

Given a tree decomposition (7, D) of G, we assume that an arbitrary node r € V(7T) is chosen
to be the root of T, and define the height, h(t) of any ¢ € T to be the distance from r to ¢. For any
v € V(G), we then define ¢, to be the unique node ¢ of minimum height such that v € D(t) (i.e. t,
is the node of minimal height in the subtree T'(v)).

We will make use of the following well-known bound on the number of nodes required in the tree
indexing the tree decomposition of a graph G (see [15, Lemma 11.9] for a proof); we shall assume
throughout that tree decompositions of this form are given.

Lemma 1.2. Let G be a graph of order n and treewidth k. Then there exists a width k tree decom-
position (T, D) for G with |T| < n. Moreover, given any tree decomposition (T',D') for G, a tree
decomposition (T, D) such that |T| < n can be computed in linear time.

Graphs having treewidth at most £ can alternatively be characterised as partial k-trees, as in
12, 32]. It follows immediately from this equivalent definition that if a graph G of order n is a partial
k-tree (i.e. it has treewidth at most k) then G has at most kn edges.

3

1.3 Parameterised complexity

When considering the class of problems which are solvable in polynomial time on graphs of treewidth
at most k, we aim, as mentioned above, to distinguish those which can be solved in time f(k) -
n?W) . Problems in this subclass are said to be fized parameter tractable, parameterised by treewidth
(and belong to the parameterised complexity class FPT). A standard method of showing that a
parameterised problem does not belong to FPT (and so the best known algorithm has running time
nf®) for some unbounded function f) is to prove that it is hard for some level of the W-hierarchy;
in Section 3 we show that LiST HAMILTON PATH is hard for W[1], the first level of this hierarchy.

In order to show that a problem is W[1]-hard, we give a parameterised reduction from a problem
that is known to be W[1]-hard. Given a W[1]-hard decision problem IT with parameter k, this involves
constructing an instance (I', k") of II' such that (I’, k') is a yes-instance for II" if and only if (7, k) is
a yes-instance for II; for a parameterised reduction we require that &’ is bounded by some function
of k, in addition to the fact that (I, k") can be computed from (I, k) in time polynomial in || and
that |I'| is bounded by a polynomial function of |I].

One useful W[1]-hard problem, which we use for a reduction in Section 3, is MULTICOLOUR CLIQUE
(shown to be W[1]-hard by Fellows, Hermelin, Rosamond and Vialette in [13]): given a graph G,
properly coloured with & colours, the problem is to determine whether there exists a clique in G
containing one vertex of each colour.

In fact, by considering the relationship between the parameters k and k' in the parameterised
reduction, it is sometimes possible to prove conditional lower bounds on the running time of any
algorithm for a specific parameterised problem. Assuming the exponential time hypothesis, a lower
bound on the running time for any algorithm to solve the CLIQUE problem is known.

Theorem 1.3 (]9, 25]). Assuming the exponential time hypothesis, there is no f(k)n°® algorithm
for CLIQUE.

Since the reduction from CLIQUE to MULTICOLOUR CLIQUE in [13] does not change the value
of the parameter, the same is true for MULTICOLOUR CLIQUE; our parameterised reduction to LIST
HAMILTON PATH in Section 3 only increases the parameter value by a constant factor, so we are
able to deduce that the same conditional lower bound also holds for LisT HAMILTON PATH.

For further background on the theory of parameterised complexity, we refer the reader to [12].

2 List Chromatic Number Problems

The main result of this section is the following theorem.

Theorem 2.1. LiIsST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER are

fized parameter tractable, parameterised by the treewidth bound k, and are solvable in linear time for
any fized k.

The key technical tool we use to prove this result is Theorem 2.8, which determines the list edge
chromatic number and list total chromatic number for graphs with fixed treewidth and large maximal
degree.

2.1 Background

We begin by recalling some existing results about the edge chromatic number and list edge chromatic
number of a graph. It is easy to see that, for any graph G, we have

A(G) < X(G) < ch(G) <2A(G) — 1,

where }/(G) denotes the edge chromatic number of G and A(G) is the maximum degree of G. The
lower bound comes from the fact that every edge incident with a single vertex must receive a different
colour; for the upper bound, note that every edge is incident with at most 2(A(G) — 1) others, so
lists of length 2A(G) — 1 guarantee that we can colour greedily. For the edge chromatic number, we
have the much stronger result of Vizing:

Theorem 2.2 ([29]). X'(G) is equal to either A(G) or A(G) + 1.

In order to give a linear time algorithm to solve EDGE CHROMATIC NUMBER on graphs of
bounded treewidth, Zhou, Nakano and Nishizeki [32] prove that, for graphs of fixed treewidth k& and
maximum degree A > 2k, the edge chromatic number must in fact be equal to A.

There is no direct analogue of Vizing’s theorem for the list edge chromatic number. The List
(Edge) Colouring Conjecture (discussed in [1, 5, 18]) asserts that x'(G) = ch’(G@) for any graph G,
and would immediately imply Vizing’s conjecture (1976) that ch’(G) < A(G) + 1. However, neither
of these conjectures has been proved except for certain special classes of graphs, and the best general
bound on the list edge chromatic number is due to Kahn.

Theorem 2.3 ([22]). For any € > 0, if A(G) is sufficiently large,
ch’'(G) < (1 + ¢)A(G).
In Theorem 2.8, we show that for a graph G of bounded treewidth and large maximum degree,
ch'(G) = X' (G) = A(G),

proving a special case of the List (Edge) Colouring Conjecture. Using this result, the LiST EDGE
CHROMATIC NUMBER problem on graphs of bounded treewidth can be reduced to the case in which
the maximum degree of the graph is bounded.

We prove an analogous result for the list total chromatic number. Once again, there exist trivial
bounds for the (list) total chromatic number of an arbitrary graph:

A(G) + 1 < yr(G) < chrp(G) < 2A(G) + 1,

where x7(G) denotes the total chromatic number of the graph. It is a long-standing but unproved
conjecture (the Total Colouring Congecture [3, 30]) that

Theorem 2.8 further demonstrates that, for a graph G of bounded treewidth and large maximum
degree,

chr(G) = xr(G) = A(G) + 1,

and so once again it suffices to solve the problem for graphs with bounded maximum degree.

Of course, there is a correspondence between these colouring problems and the vertex-colouring
problems discussed above. For any graph G = (V| E), the line graph L(G) of G has vertex set F, and
e, f € E are adjacent in L(G) if and only if e and f are incident in G. Then solving (for example) L1ST
EpGE CHROMATIC NUMBER for the graph G is equivalent to solving LiST CHROMATIC NUMBER
for L(G). Similarly, we define the total graph T(G) of G to have vertex set V U E, and edge set
Eu{ef:e f € Eande, f incident in G} U {ve : v is an endpoint of e}, and solving LiST TOTAL
CHROMATIC NUMBER for G is then equivalent to solving LiST CHROMATIC NUMBER for T'(G).
However, as the treewidth of L(G) or T(G) can in general be arbitrarily large even when G itself
has small treewidth, results about the parameterised complexity of vertex colouring problems do not
immediately transfer to the edge and total colouring cases.

If the maximum degree of G is bounded, however, the following result (proved in [11]) tells us
that the treewidth of L(G) is bounded by a constant multiple of that of G.

5

Lemma 2.4. Let G be a graph of treewidth at most k, and mazimum degree at most A. Then L(QG)
has treewidth at most (k + 1)A.

A similar result holds for the treewidth of T'(G).

Lemma 2.5. Let G be a graph of treewidth at most k, and maximum degree at most A. Then T(QG)
has treewidth at most (k +1)(A +1).

Proof. If (T,D) is a width k tree decomposition for G, it is easy to verify that (7, D’), where
D'(t) = Dt)U{uww € E : {u,v} ND(t) # 0}, is a tree decomposition of T'(G) of width at most
(k+1)(A+ 1), O

We will need two further results for our proofs. First, a theorem of Galvin concerning the list
edge chromatic number of bipartite graphs:

Theorem 2.6 ([16]). Let G be a bipartite graph. Then

M (G) = X'(G) = AG).

Finally, we make use of an algorithm of Bodlaender:

Theorem 2.7 ([4]). For all k € N, there exists a linear-time algorithm that tests whether a given
graph G = (V, E) has treewidth at most k and, if so, outputs a tree-decomposition of G with treewidth
at most k.

2.2 Results and Proofs

In this section we prove our technical results about the list edge chromatic number and list total
chromatic number of graphs with bounded treewidth and large maximum degree, and then give
linear-time algorithms to solve LiST EDGE CHROMATIC NUMBER and LiST TOTAL CHROMATIC
NUMBER on graphs of bounded treewidth.

Our algorithms rely on the following theorem, which is a special case of both the List (Edge)
Colouring Conjecture and the Total Colouring Conjecture.

Theorem 2.8. Let G be a graph with treewidth at most k and A(G) > (k + 2)28+2. Then ch'(G) =
A(G) and chr(G) = A(G) + 1.

This result can be derived from earlier work by Borodin, Kostochka and Woodall [7, Theorem 7]
(with a quadratic rather than exponential dependence on k). For the sake of completeness, however,
we will give a direct, self-contained proof of this result. Moreover, since the dissemination of an initial
version of this paper, the techniques introduced in our proof have been refined by Bruhn, Lang and
Stein [8] to demonstrate that only a linear dependence on k is in fact required.

We prove the result by means of two lemmas, concerning the list edge chromatic number and list
total chromatic number respectively; Theorem 2.8 follows immediately from these auxiliary results.
We start by considering the list edge chromatic number.

Lemma 2.9. Let G be a graph with treewidth at most k. Then ch'(G) < max{A(G), (k + 2)2¥2}.

Proof. We proceed by contradiction. Suppose that the result does not hold, and let G be a coun-
terexample with as few edges as possible, so there exists a set £ = (L¢)ccr(q) of colour-lists, all of
length Ay = max{A(G), (k + 2)2¥2}, such that there is no proper list edge-colouring of (G, £). We
may assume without loss of generality that GG contains no isolated vertices and so, by edge-minimality
of G, we must have ch’(G") < max{A(G"), (k + 2)2*"2} < A, for any proper subgraph G’ of G.

6

We may assume that every edge e € E(G) is incident with at least Ay others: if e is incident with
fewer than Ay other edges then we can extend any proper list edge-colouring of (G —e, L\ {L.}) to
a proper list edge-colouring of (G, £). We will show that, under this assumption, there must exist a
nonempty set of vertices U such that any proper list edge-colouring of (G \ U, (L¢)ecr(c\v)) can be
extended to a proper list edge-colouring of (G, L), contradicting the choice of G' as an edge-minimal
counterexample (as the fact there are no isolated vertices in G means e(G' \ U) < e(G)).

Let us define L C V(G) to be the set of vertices of degree at least Ag/2 (the set of vertices of
“large” degree), and note that every edge is incident with at least one vertex from L (as otherwise
it can be incident with only Ag — 1 other edges). Thus S = V(G) \ L (the set of vertices of “small”
degree) is an independent set. Fix a width k tree decomposition (7', D) of GG, and choose v € L such
that h(t,) = max,cr h(t,). We then set 7" to be the subtree of T rooted at t,, that is the subgraph
of T" induced by nodes u such that the path from w to the root contains t,.

Set X C V(G) to be U, D(t), and X' = X \ D(t,). We then make the following observations
(where, for any U C V(G), T'(U) denotes the set of neighbours of vertices in U).

1. LN X C D(t,): if any vertex z € L appears in a bag indexed by 7" but does not appear in
D(t,), we must have h(t,) > h(t,), contradicting the choice of v. This implies immediately
that X’ C S.

2. T'(X') € D(ty): no vertex from X’ can appear in a bag of the decomposition not indexed by
T', so clearly we have I'(X’) C X; but also, as X' C S, we have I'(X’) C L and so we see
D(X') C LN X CD(t,).

3. |X'| > Ao/2 — k: since v appears only in bags indexed by 7", we have I'(v) C X \ {v},
implying |X| — 1 > d(v) > Ay/2, and we know |X| — |X'| = |D(t,)| < k + 1, so we have
|1 X'| > |X|—k—1>Ay/2—k.

As the neighbourhood of any vertex x € X' is contained in D(t,), there are at most 2**! possibilities
for the neighbourhood of such a vertex. Therefore there must exist some subset U C X such that
every vertex in U has the same neighbourhood, and

X' No/2—k _ (k+2)28 —k
|U| > ok+1 > 9k+1 > ok+1

> k+1>|0(U)]

Now let ¢ be a proper edge-colouring of (G \ U, (L¢)eccr\vy)- If we can extend ¢ to a proper
edge-colouring of GG in which every edge incident with U also receives a colour from its list, then we
have a proper list edge-colouring of (G, L), giving the required contradiction.

Set W =T'(U), say W = {wy,...,w,} (where r < |UJ), and let H be the complete bipartite
subgraph of GG induced by U U W. Suppose, for 1 < i < r, that F; is the set of colours already used
by ¢ on edges incident with w;, and for each u € U define the list L}, to be Ly, \ F;. If we can
properly colour the edges of H in such a way that each edge e € E(H) is given a colour from L/,
then we can extend ¢ as required.

Observe that, for each i, |F;| < A(G) — |U], and so we have |L,,.| > Ao — A(G) +|U| > |U|. But
as H is bipartite, with maximum degree |U|, we have (by Theorem 2.6)

ch'(H) = A(H) = U] .

Therefore, as each list L/ contains at least |U| colours, there exists a proper edge colouring of H in
which every edge e receives a colour from its list L., completing the proof. O]

We use a very similar argument to prove an analogous result for the list total chromatic number.

Lemma 2.10. Let G be a graph with treewidth at most k. Then chp(G) < max{A(G), (k+2)2*2}+1.

Proof. Again, we proceed by contradiction. Let Ag = max{A(G), (k + 2)2¥*2}. Suppose that the
result does not hold, and let G be a counterexample with as few edges as possible, so there exists a
set L = (Lz)zev(c)ur) of colour-lists, all of length Ay + 1, such that there is no proper list total
colouring of (G, £). We may assume without loss of generality that G contains no isolated vertices
and so, by edge-minimality of G, we must have ch7(G’) < max{A(G’), (k+2)282} +1 < Ay +1 for
any proper subgraph G’ of G.

We may assume that every edge e € E(G) is incident with at least Ay — 1 others: if e is incident
with fewer than Ay — 1 other edges then at most A colours can appear on vertices or edges incident
with e, and so any proper list total colouring of (G — e, £\ {L.}) can be extended to a proper
list total colouring of (G, L). Thus, if we define L' C V(G) to be the set of vertices of degree at
least (Ag — 1)/2, every edge is incident with at least one vertex from L', and S’ = V(G) \ L' is an
independent set.

Exactly as in the proof of Lemma 2.9, we can find a subset U C S’ such that all vertices of U
have the same neighbourhood of size at most k 4+ 1, and

TR
S (k+2)2"2—-1)/2 -k
= Qk+1
>k+1
> [D(U)].

As G'\ U is a proper subgraph of G, there exists a proper list total colouring ¢ of (G \ U, L')
where L' = (Ly)sep@\vyuv(e\v)- If we can extend ¢ to a proper total colouring of G in which every
vertex from U and every edge incident with U also receives a colour from its list, then we have a
proper list total colouring of (G, L), giving the desired contradiction.

As in the proof of Lemma 2.9, set W = I'(U), say W = {wy,...,w,} (where r < |U]), and let
H be the complete bipartite subgraph of G induced by U U W. Suppose, for 1 < ¢ < r, that Fj is
the set of colours already used by ¢ on w; and the edges incident with w;, and for each u € U define
L, tobe Ly, \ F;.

Observe that, for each i, |F;| < 1+ A(G) — |U|, and so we have

|Luw,| > Do +1—1—A(G)+|U| > |U|.

As H is bipartite, with maximum degree |U|, we have (by Theorem 2.6) ch’'(H) = A(H) = |U|.
Therefore, as each list L) contains at least |U| colours that are not already used by ¢ on edges or
vertices incident with e, we can extend ¢ to a proper list colouring ¢' including the edges incident
with U. If we can then colour the vertices of U in such a way that no u € U receives a colour used
by ¢’ on an adjacent vertex or incident edge, we can indeed extend ¢ to a proper list total colouring
of G.

Note that every u € U has degree at most k + 1, and so is adjacent to or incident with at most
2(k + 1) vertices and edges of G. Thus, as |L,| > A¢g+ 1 > 2(k + 1), there is at least one colour
in L, that is not used by ¢’ on a vertex adjacent to u or on an edge incident with u, and we can
extend ¢ to the vertices of U greedily. This gives a proper list total colouring of (G, L), completing
the proof. O

Together, Lemmas 2.9 and 2.10 prove Theorem 2.8. We can now prove our main complexity
result, based on Theorem 2.8.

Proof of Theorem 2.1. Let G be a graph on n vertices, with treewidth at most k, and set f(k) =
(k +2)282. We can check in time O(f(k)n) whether A(G) > f(k), and if this is the case then, by

Theorem 2.8, we know the exact value of ch’(G) and chy(G). Thus it suffices to solve both problems
in the case that A(G) < f(k).
This is exactly the same as solving L1IST CHROMATIC NUMBER on L(G) or T'(G), when A(G) <

f(k). But in this case, by Lemmas 2.4 and 2.5, L(G) and T'(G) have bounded treewidth. Note that
both graphs can be computed from G in time

O(e(L(G)) +e(T(G))) = O((k + D(f (k) + D(T(G)] + [L(G)])
= O(k*f(k)|G]),

and so we can then use Bodlaender’s algorithm (Theorem 2.7) to find a tree decomposition of L(G)
or T'(G), of width at most (k+1)(f(k)+1), in time O(|G|) for any fixed k. Given this decomposition
we can, by Theorem 1.1, compute the list chromatic number of L(G) or T(G), and hence the list
edge chromatic number or list total chromatic number of G, in linear time. O

Our proof also implies a polynomial-time algorithm to compute a proper list edge-colouring of
any graph G of fixed treewidth and large maximum degree, provided every L € L has length at least
A(G). The same method can also be used to compute a list total colouring of such a graph, provided
every list has length at least A(G) + 1. Here we describe an O(n?) algorithm to achieve this; with
the use of suitable data structures this can probably be improved to a linear-time algorithm, but for
simplicity of presentation we do not seek to optimise the running time here.

Theorem 2.11. Let G be a graph of order n and treewidth k, with mazximum degree at least (k +
2)2813 and let £ = (L¢)eer(q) be a set of colour-lists such that |L.| > A(G) for all e € E(G). Then,
for fived k, we can compute a proper list edge-colouring of (G, L) in time O(n?).

Proof. The idea of the algorithm is to delete edges or sets of vertices repeatedly, as in the proof of
Lemma 2.9, until the degree of the remaining graph is less than (k + 2)282 < A(G)/2, so the edges
of this graph can be list-coloured greedily. Edges and vertices are then reinserted and coloured to
extend this colouring to the edges of G. Unlike in the proof of Lemma 2.9, where we identified a set
of at least k + 1 vertices to delete, in this algorithm we always delete a set of exactly k + 1 vertices.
Without loss of generality, we may also assume that every list L. has length ezactly A(G) < n,
discarding additional colours if necessary.

We begin with some preprocessing. For each vertex, we construct a list of its neighbours, and
we also construct an n-element array storing the degree of each vertex. For each vertex of degree at
most k + 1, its list of neighbours is sorted into order; the list of vertices of degree at most k£ + 1 is
then also sorted, in order of neighbourhoods (so that vertices with the same neighbourhood occur
consecutively). All this can be done in time O(n?).

Note that each time we delete an edge, we can update this information in time O(n): we update
the neighbour lists of the edge’s endpoints and decrement their degrees, and if one or both of the
endpoints now has degree at most k£ + 1 its neighbours are sorted and it is inserted into the correct
position in the list of small-degree vertices. From the point of view of updating information, deleting
a set of k+ 1 vertices can be regarded as a series of edge-deletions, each performed in time O(n). As
there are O(n) edges in total, this means we can perform all updates after deletions in time O(n?).

Given the array of degrees of all vertices, it is straightforward to identify in time O(n) an edge
incident with fewer than A(G) others, if such an edge exists. If there is no such edge, we know from
the proof of Lemma 2.9 that (provided the maximum degree of the graph is still at least (k +2)2~+2)
there exists a set of k+1 vertices with a common neighbourhood of size at most k+1. As the vertices
of degree at most k+ 1 are sorted by their neighbourhoods, it is also possible to identify such a set of
vertices in linear time. Thus at each step we are able to identify the edge or set of vertices to delete
in time O(n), and so all deletions (and subsequent updating) can be performed in time O(n?).

It therefore remains to show that we can also perform the reinsertions in time O(n?). When we
reinsert an edge, we can simply colour it with the first available colour from its colour-list, taking

9

time O(n). When reinserting a set of k+ 1 vertices, we need to colour up to (k+1)? edges which form
a complete bipartite subgraph. Recall from the proof of Lemma 2.9 that every such edge still has
at least k 4 1 available colours from its list (i.e. colours that have not already been used on incident
edges), and that there exists a proper list edge-colouring of the bipartite graph if every edge has a
list of exactly k + 1 permitted colours. For each of the edges, we can compute in time O(kn) a list
of k + 1 colours from its colour-list which have not yet been used on incident edges. We can then
check in constant time all possible colourings of the (k + 1)? edges in which each receives one of the
k + 1 colours from its list, to find a proper colouring of this bipartite graph, which is guaranteed to
extend the list edge-colouring as required.

Thus we can perform all reinsertions in time O(n?), completing the proof of the theorem. O

3 List Hamilton Path

Recall from Section 1.1 the List Hamilton Path (or Itinerant Lecturer) problem:

LisT HAMILTON PATH

Input: A graph G = (V, E), and a set of lists £L = {L, C {1,...,|V]|} : v € V} of permitted
positions.

Question: Does there exist a path P = P[1]... P[|G|] in G such that, for 1 < i < |G|, we have
1€ Lp[i]?

Given a graph G and a set of lists £ = {L, C {1,...,|G|} : v € V(G)} of permitted positions, we
say a path P = P[1]... P[|G|] in G is a valid Hamilton path if 7 € Lpy; for every i. In this section,
we prove the following result.

Theorem 3.1. LisT HAMILTON PATH, parameterised by pathwidth, is W[1]-hard. Moreover, un-

der the exponential time hypothesis, there is no algorithm to solve LiST HAMILTON PATH in time
f(E)n°®) on graphs of pathwidth k.

We prove our theorem by means of a reduction from MULTICOLOUR CLIQUE. The reduction
involves an edge representation strategy: we select an edge by visiting the vertices of the associated
gadget in a specific order, and the permitted positions for other vertices in the graph ensure that the
edges selected in this way must in fact be the edges of a multicolour clique.

Suppose G is the k-coloured, n-vertex graph in an instance of MULTICOLOUR CLIQUE: we may
assume without loss of generality that all £ vertex classes have the same size, and also that the number
of edges between each pair of vertex classes is the same (as adding isolated edges and vertices does
not change the existence or otherwise of a multicolour clique). Let the vertex classes be Vi, ..., Vj,
where V; contains vertices V;[1], ..., Vi[p], and assume that there are g edges between each pair of
vertex classes. For technical reasons, it will be useful to assume (without loss of generality) that
k,n > 4.

We now describe the construction of a graph H of pathwidth at most 5k, and a set of lists
L = (Ly)vev(m) such that there is a valid Hamilton path in (H, L) if and only if G contains a
multicolour clique.

Our construction consists of k+1 paths, with some additional edges linking them: paths Py, ..., P
correspond to the vertex classes Vi, ..., Vs, and an additional path @) is used to connect P, ..., P;.
Each path P, has 2n? vertices (so |P;| > 4¢(5) = 4e(G)), and we denote the j™ vertex of P, by
P;[j — 1]. The path @ = Q... Q) is the concatenation of k subpaths Q1,...,Q, each containing
n?(n — 2) vertices and, for 1 < i < k, every vertex of @Q;, except for the first vertex of Q; and the
last vertex of Qy, is adjacent to both P;[0] and P;[2n* — 1].

In addition, we have a number of edge-gadgets, consisting of edges between pairs of the paths
Py, ..., P,. Suppose E(G) = {eo,...,em—1}. Then, for each edge e, between V; and V; with i < j,

10

we have an edge-gadget G(e,), involving the r** group of four vertices in P; and the corresponding
group of vertices from P;. G(e,) has edges P;[4r]|P;[4r + 1], P;[4r]|P;[4r + 1], P;[4r + 1] P;[4r + 3] and
P;[4r + 2] P;[4r + 2], as illustrated in Figure 1.

P [41] P [4r+1] P [4r+2] P [4r+3]

P 4] P 4r+1) P [4r+2) P [4r+3]

Figure 1: The edge-gadget G(e,), where e, has endpoints in V; and V; with i < j

This completes the construction of the graph H. We now define the list of permitted positions
for each vertex. For 1 <1i < k, we set

Lpjo = {(i — Dn® +3an 11 < a < pl,

and
Lppnzy ={(—1)n® +3an”+ (2n* —= 1)+ k+1—-2i: 1 < a < p}.

We further define the list
Liit)={(i—1)n*+3an*+t+8:1<a<p —(k—1)<B<k—1}.

For every internal vertex Pj[t], the list Lp,;y will contain L(4,¢). In most cases we in fact set Lp, =
L(i,t), the only exceptions being three vertices in each edge-gadget G(e): if e = V;[r]V;[s] and the
vertices in G(e) are B[(], ..., B¢+ 3], P;[¢],..., P;[{+ 3], then the list for P;[¢ + 1] will additionally
contain positions

{G=1Dn 430>+ (L+1)+5:—(k—1) < B <k—1},
while the lists for P;[¢ + 1] and P;[¢ + 2] also contain
{G—=1)n*+3rm?*+ ((+1)+B:—(k—1)<B<k-1}

and
{G—=1)n*+3rm?*+ ((+2)+B:—(k—1)<B<k-1}

respectively. The first vertex on @ has singleton list {1} and the last vertex on @ has singleton list
{kn3}; we place no restriction on the positions that the remaining vertices from @ can take in a valid
Hamilton path.

Intuitively, the idea is that any valid Hamilton path must (with the exception of a few vertices
belonging to the edge-gadgets) traverse Py, ..., Py in that order, using sections of @) before and after
each P; to connect the paths. In this construction, our choice of position for P;[0] corresponds to
a choice of vertex from V;: if B;[0] takes position (i — 1)n® + 3rn?, we say that the Hamilton path
selects Vi[r]. Notice that, for any edge-gadget G. (where e = V;[r]V}[s]), there are precisely two
possibilities for which edges within G, are used by a Hamilton Path, as illustrated in Figure 2. If
we use the edge P;[4r]Pj[4r 4+ 1] (and so also use the edges P;[4r + 2]P;[4r + 2], P;[4r]P;[4r + 1] and
P;[4r + 1] P;[4r + 3]) we say that the Hamilton path selects the edge e.

We begin by explaining how, given a multicolour clique in GG, we can construct a valid Hamilton
path in H.

11

P [4r] P [4r+1] P [4r+2] P [4r+3]

- L EEELEL B

L R

" *s ' ~
P[4 P [4r+1] P [4r+2) P [4r+3]

P [4r] P [4r+1] P [4r+2] P [4r+3]

Ll LR FPEPPEEY PP Ery TF
P 4] P 4r+1] P 4r+2] P [4r+3]

Figure 2: Two possibilities for the edges used by a Hamilton path in the gadget G.: in the first case,
we say that the path selects e.

Lemma 3.2. If G is a yes-instance for MULTICOLOUR CLIQUE, then (H, L) is a yes-instance for
LisT HAMILTON PATH.

Proof. Suppose we have a multicolour clique that contains V;[r;] for 1 < i < k. We claim we can
then find a Hamilton path in H in which every vertex has a position from its permitted list.

In such a path, we give P[0] position (i — 1)n® + 3r;n®. Each path P; is traversed from end to
end in order, except for the selection of precisely (g) edges: for each 1 < i < j < k we will select
the edge V;[r;]V;[r;] (which is possible since Vi[ri],..., Vi[ry] induces a clique. Note that the lists
for each vertex in the gadget corresponding to the edge V;[r;]V;[r;] will always allow us to select this
edge: if the vertices in the gadget are B,[¢],..., B[+ 3], P;[(],..., P;[{ + 3], then P;[¢ + 1] is allowed
to take any position in {(j — 1)n* +3rn* + ({+ 1)+ : —(k—1) < 8 <k — 1}, whereas P;[¢ + 1]
can take any position in {(i — 1)n* +3rin* + ({+1)+8: —(k—1) < 8 < k—1} and P;[¢ + 2] any
position in {(i = 1)n® +3rn* + ({+2)+p: —(k—1) < B < k—1}.

The number of vertices lying on the path between P;[0] and P;[2n? — 1] will then be equal to
2n* — 2+ (k—1) — (1 — 1) = 2n* — 1 + k — 2i (since, in comparison with simply traversing P;, this
segment of the path gains one vertex for each selected edge V;[r;]V}[r;] where j > 4, and loses one
vertex for each selected edge V;[r;]V;[r;] where j < i). This means that P;[2n* — 1] will have position
(i —1)n® +3rin® + (2n* — 1) + k + 1 — 24, which belongs to its list, and it is straightforward to verify
that every other vertex on each path P; will receive a position from its list.

Finally, we connect up these path segments using segments of @), so that each vertex P;[0] has the
desired position in the final path. If P;[0] occurs on the path immediately after some vertex Q;[c]
then P;[2n? —1] is followed by Q;[a + 1], so every vertex of @ is included on the path; the first vertex
of () is the first vertex on the path, and the last vertex of () the last, as required by the lists for these
two vertices.

This path then includes every vertex in H, and gives each vertex a position from its permitted
list, so (H, £) is indeed a yes-instance for L1IsT HAMILTON PATH. O

We now proceed to demonstrate that the converse is also true: if H contains a valid Hamilton
Path then GG must contain a multicolour clique. In order to demonstrate this fact in Lemma 3.9, we
first prove a number of propositions about the structure of valid Hamilton paths in H. Throughout,

12

we shall assume that P is a valid Hamilton path in H.

Proposition 3.3. For any vertex B;[(] in H, there is a unique pair of values (fp(B;[€]), gp(P;[¢])) with
fe(Pl0) € {1,...,k} and gp(P,[€]) € {1,...,p} such that B;[{] takes position (fp(Bi[(]) —1)-n®>+3-
gp(B[l]) n*+t+p8 for somet € {0,...,2n*—1} and B € {—(k—1),...,(k—1)}. Moreover, if vertices
P;[0] and P;[l'] occur consecutively on P, then fp(P;[l]) = fp(P;[l']) and gp(P;[¢]) = gp(P;[C']).

Proof. Tt is straightforward to show that, if a; # ag or by # by, then, for any choice of t;,ts €
{0,...,2n* =1} and By, B2 € {—(k —1),...,(k— 1)}, we have

‘(al-n3+3-bl-n2+t1+61)—(ag-n3+3-b2-n2+t2+52)| > 1,
which immediately implies the result. [

Proposition 3.4. For each i € {1,...,k}, the set of vertices fp*(i) occurs consecutively on P, and
there is a unique ¢(i) € {1,...,p} such that gp(Pi[{]) = ¢(i) for every B[] € fp'(i).

Proof. Let us call a vertex belonging to the path P; for some 1 < i < k a p-vertex, and a vertex
belonging to the path) in H a g¢-vertex. The Hamilton path P can then be decomposed into
segments, where each segment is a maximal set of consecutive vertices of the same kind (either p-
vertices or g-vertices). Note that the first and last segments of P must consist of g-vertices, since we
know that the first vertex on () must be the first vertex of P, and the last vertex of () must be the
last vertex of P.

Now consider an arbitrary segment of p-vertices, and note that each of its endpoints must be
adjacent in P to a g-vertex. Notice that the set of p-vertices that have at least one ¢-vertex as a
neighbour is precisely {P;[0], P;[2n? — 1] : 1 <i < k}, so the endpoints of every segment of p-vertices
must lie in this set. Since two distinct segments of p-vertices must have disjoint pairs of endpoints
in this set, and |[{P[0], P;[2n® — 1] : 1 <@ < k}| = 2k, it follows that there can be at most k distinct
segments of p-vertices. Moreover, by Proposition 3.3, all p-vertices belonging to the same segment
must map to the same value under both f and g.

Notice that, by definition of the lists for P;[0] and P;[2n?—1], we have f(P;[0]) = f(P;[2n?—1]) = 1.
Thus, for each 1 < i < k, there must be precisely one segment, S;, of p-vertices such that fp(v) =1
for every vertex v belonging to the segment. It follows that the vertices of f5'(i) are exactly those of
S;, so all vertices of f5'(i) occur consecutively on P. Moreover, it therefore follows from Proposition
3.3 that there exists some ¢(i) € {1,...,p} such that gp(v) = ¢(i) for every vertex v € fp'(i). O

Proposition 3.5. For eachi € {1,...,k}, we have |fp'(i)| = 2n® + k + 1 — 2i.

Proof. Recall that fp(P;[0]) = fp(P[2n* — 1]) = i, so by Proposition 3.4 we have gp(P[0]) =
gp(P;[2n?—1]) = ¢(i). It then follows from the lists of permitted positions for P;[0] and P;[2n?—1] that
their positions on the path differ by precisely 2n?+k—2i. Thus we must have | f5'(i)| > 2n%+k—2i+1.
It then follows that

k k
1
DO =D mP+k—2i41= 2hn® + K2 + k=2 “h(k + 1) = 2kn?,
=1

i=1

with equality if and only if | fp'(i)] = 2n%+k — 2i + 1 for each 4. Since the sets {f5'(1),..., fp (k)}
partition the p-vertices, of which there are in total 2kn?, it therefore follows that S5, |f51(i)| = 2kn?
and hence that |f5'(i)| = 2n? + k — 2i + 1 for each i, as required. O

Proposition 3.6. If P selects the edge e, we must have e = V;[¢(2)|V;[¢(j)] for some 1 <i < j <k.

13

Proof. Suppose that P selects the edge e, and that the vertices in the gadget G, are Bi[/], ..., P;j[{ +
3], P;[l], ..., P;[¢ +3]. Since P;[¢] and P;[¢ + 1] occur consecutively on P, it follows from Proposition
3.3 that fp(B[l]) = fp(P;[¢ + 1]) and gp(P[¢]) = gp(F[¢ + 1]). The list for P[¢] is precisely
{i—1)n*>+3an*+t+p:1<a<p—(k—1) < B < (k—1)}, so we can see immediately that
fp(P;[¢]) =i and hence (by Proposition 3.4) gp(PB;[¢]) = ¢(i).

The fact that fp(P;[¢ + 1]) = ¢ means that the only possible positions in the list for P;[¢ + 1] are
{(i=1)n+3rm*+(l+1)+8: —(k—1) < B < (k—1)}, where e = V;[r]V}[s] for some s € {1,...,p}.
We know, however, that gp(P;[¢ + 1]) = ¢(i), so it follows that V;[¢(¢)] is one endpoint of e.

Applying symmetric reasoning to the P;[¢] and P;[¢+1] (which also occur consecutively on P) tells
us that V;[é(j)] is the other endpoint of e. We therefore have e = V;[¢(i)]V}[o(j)], as required. [

Proposition 3.7. The set of edges selected by P is {V;[¢(i)V;[p(7)] 1 1 < i< j < k}.

Proof. First observe that the only vertices which can possibly belong to fp '(4) are vertices which
either belong to P;, or else to an edge gadget G. such that P selects e and one endpoint of e is in
V;. Suppose that P selects the gadget G, where e = V;[r]V;[s]. If j >4, f5'(i) will contain precisely
two vertices of P; in G, but one vertex of P; in G, will not belong to fp'(i). If j < i, on the other
hand, then fp 1(z) will contain exactly one vertex of P; in G., but two vertices of P; in G, will not
belong to fp(i).

We now prove, by induction on 7, that the set of edges P selects with one endpoint in V; U --- U
V; is precisely {Vi[#(0)]V;[p(j)] : 1 < £ < i}. We know from Proposition 3.5 that |f5'(1)] =
2n? + k — 1 so, as |P;| = 2n% we must have additional vertices belonging to fp'(1) from se-
lected edges with an endpoint in V;. For each such edge that P selects, the number of ver-
tices in fp, '(4) will be increased by exactly one, so we must select exactly & — 1 such edges. By
Proposition 3.6, we know that the only edges we can select which have one endpoint in V; are
Vilp(D)]Va[o(2)], Vilo(1)]V5]p(3)], - . ., Vi[o(1)]Vi[p(k)], so in fact all of these edges must be selected.
This completes the proof of the base case.

For the inductive step, we will assume that all edges V;[¢(7)]V;[¢(j)] with 1 <i < kK andi < j <k
are selected. We need to show that all edges Vi/[p(E")]V;[¢(j)] with &' < j < k are also selected.

We know from Proposition 3.5 that |f5' (k)| = 2n? + k+1—2k". Since |Py| = 2n?, and we know
from the inductive hypothesis that exactly &' —1 edges V;[¢(i)] Vi [¢(k")] with i < k" are selected (each
of which reduces the number of vertices in f5'(k') by one), it follows that there must be exactly

20+ k+1-2K - 20— (K = 1)) =k ¥

edges selected with one endpoint in Vs and one endpoint in V; for some j > k’. By Proposition 3.6,
the only such edges which could be selected are Vi [¢p(k')|Viri1[p(K + 1), ..., Vi [o(K)|Vi[o(k)]; it
follows that all of these edges must be selected by P.

This completes the proof by induction, and the result follows immediately. O]

Proposition 3.8. The set of vertices {V;[p(i)] : 1 <i < k} induces a multicolour clique in G.

Proof. Tt is immediate that this set of vertices is multicoloured, since it contains exactly one ver-

tex from each vertex class Vi,...,V,. Moreover, we know from Proposition 3.7 that P selects
Vilo(0)]V;[p(4)] for each 1 < i < j < k, so Vi[¢p(?)]V;[¢(j)] must be an edge of G, for each
1 <i<j <k Hence{Vjp(i)] : 1 <i <k} induces a clique. O

The fact that the existence of a valid Hamilton path in H implies the existence of a multicolour
clique in G now follows immediately.

Lemma 3.9. If (H,L) is a yes-instance for LIST HAMILTON PATH, then G is a yes-instance for
MULTICOLOUR CLIQUE.

14

It now remains only to bound the pathwidth of the graph H.
Lemma 3.10. H has pathwidth at most 5k.

Proof. We construct a path decomposition of H, indexed by a path T' with |T| = |Q| + 2n? — 5.
Every bag of the decomposition contains the vertices V,,q = {P;[0], Pj[2n* — 1] : 1 < j < k}. In
addition, for 1 < i < |@| — 1, the bag indexed by the " node of T' contains the " and (i + 1)
vertices of @, while, for |Q| < i < |Q] + 2n? — 5, the bag indexed by the i** node of T' contains all
vertices {P;[i — |Q| + 1], Pj[i — |Q| + 2], P;[i — |Q| 4+ 3] : 1 < j < k}. Note that every bag contains at
most bk vertices.

It is immediate from this construction that, for any vertex v € V(H), the nodes indexing bags
that contain v induce a subpath of T'. So it remains to show that, for every edge uv € E(H), there
exists some bag of the decomposition that contains both u and v. For all edges within) this is
clearly true. Note that, for 1 < [< 2n* — 2, any vertex F;[l] is only adjacent to vertices P;[l']
where |l —I'| <2, and so any edge between internal vertices of the paths P, ..., P, must have both
its endpoints in some bag of the decomposition. All remaining edges are then incident with some
v € Vong, but Vi,4 is contained in every bag, and so the condition is also satisfied for these edges.

Hence we have a path decomposition of H of width at most 5Hk. O]

We are now ready to prove the main theorem of this section.

Proof of Theorem 3.1. Tt follows immediately from Lemmas 3.2 and 3.9 that (H, £) is a yes-instance
for LisT HAMILTON PATH if and only if G is a yes-instance for MULTICOLOUR CLIQUE. H has
order polynomial in |G|, and can clearly be computed from G in polynomial time. Moreover, by
Lemma 3.10 we know that the pathwidth of H depends only on the parameter k, the number of
colours used in GG. This completes the reduction to show that LisST HAMILTON PATH, parameterised
by treewidth, is W[1]-hard. Moreover, the construction given above demonstrates that if there is
an algorithm to solve LiST HAMILTON PATH in time f(k)n°* on graphs of pathwidth & (for some
function f) then MULTICOLOUR CLIQUE and hence CLIQUE can be solved in time g(k)n°® (for
some function g); thus, by Theorem 1.3, there can be no such algorithm for LisST HAMILTON PATH
unless the Exponential Time Hypothesis fails. O

4 Conclusions and Open Problems

We have proved that LIST EDGE CHROMATIC NUMBER and LIST TOTAL CHROMATIC NUMBER
are fixed parameter tractable, parameterised by treewidth, although the LisT EDGE COLOURING
and L1sT ToTAL COLOURING problems are NP-hard on graphs of treewidth at most two. Thus, as
for vertex colouring, it is computationally easier to calculate list edge or total chromatic number of
a graph than to determine whether a given set of lists admits a proper colouring of the graph.

We also demonstrated that LisT HAMILTON PATH is W]l]-hard, even when parameterised by
pathwidth, giving another example of a problem that solvable in linear time on graphs of bounded
treewidth but has a W([1]-hard list version. Our reduction also implies f(k)n°*) lower bound on the
running time for any algorithm to solve this problem on graphs of treewidth k, under the exponential
time hypothesis. A natural open question is whether LisT HAMILTON PATH may belong to FPT
with respect to other parameters, such as the feedback vertex set size or the vertex cover number of
the graph.

More generally, it would be interesting to investigate whether there are further problems that are
fixed parameter tractable parameterised by treewidth but have a list version which is W[1]-hard in
this setting.

15

References

1]

[10]

[11]

[12]

[15]
[16]

[17]

Noga Alon, Restricted colorings of graphs, Surveys in Combinatorics, 1993, Proceedings, 14th
British Combinatorial Conference (K. Walker, ed.), London Mathematical Society Lecture Note
Series, vol. 187, Cambridge University Press, 1993, pp. 1-33.

Stefan Arnborg and Andrzej Proskurowski, Linear time algorithms for NP-hard problems re-
stricted to partial k-trees, Discrete Applied Mathematics 23 (1989), 11-24.

M. Behzad, Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965.

Hans L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small trecwidth,
STAM Journal on Computing 25 (1996), no. 6, 1305-1317.

B. Bollobés and A. Harris, List-colourings of graphs, Graphs and Combinatorics 1 (1985), 115
127.

Richard B. Borie, R. Gary Parker, and Craig A. Tovey, Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families, Algorithmica 7 (1992), 555-58]1.

O. V. Borodin, A. V. Kostochka, and D. R. Woodall, List edge and list total colourings of
multigraphs, Journal of Combinatorial Theory, Series B 71 (1997), no. 2, 184-204.

Henning Bruhn, Richard Lang, and Maya Stein, List edge-coloring and total coloring in graphs
of low treewidth, Journal of Graph Theory 81 (2016), no. 3, 272-282.

Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David Juedes, Iyad A. Kanj, and
Ge Xia, Tight lower bounds for certain parameterized NP-hard problems, Information and Com-
putation 201 (2005), no. 2, 216 — 231.

B. Courcelle, The monadic second-order logic of graphs I: recognizable sets of finite graphs,
Information and Computation 85 (1990), 12-75.

Gruia Calinescu, Cristina G. Fernandes, and Bruce Reed, Multicuts in unweighted graphs and
digraphs with bounded degree and bounded tree-width, Journal of Algorithms 48 (2003), 333-359.

Rodney G. Downey and Michael R. Fellows, Fundamentals of parameterized complexity, Texts
in Computer Science, Springer, 2013.

M. Fellows, D. Hermelin, F. Rosamond, and S. Vialette, On the fized-parameter intractability
and tractability of multiple-interval graph properties, Theoretical Computer Science 410 (2009),
53-61.

Michael R. Fellows, Fedor V. Fomin, Daniel Lokshtanov, Frances Rosamond, Saket Saurabh,
Stefan Szeider, and Carsten Thomassen, On the complexity of some colorful problems parame-
terized by treewidth, Information and Computation 209 (2011), 143-153.

J. Flum and M. Grohe, Parameterized complexity theory, Springer, 2006.

F. Galvin, The list chromatic index of a bipartite multigraph, Journal of Combinatorial Theory,
Series B 63 (1995), no. 1, 153-158.

M. R. Garey, D. S. Johnson, and R. Endre Tarjan, The planar Hamilton circuit problem is
NP-complete, SIAM Journal on Computing 5 (1976), 704-714.

16

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Roland Haggkvist and Amanda Chetwynd, Some upper bounds on the total and list chromatic
numbers of multigraphs, Journal of Graph Theory 16 (1992), no. 5, 503-516.

lan Holyer, The NP-completeness of edge-coloring, SIAM J. on Computing 10 (1981), no. 4,
718-720.

Shuji Isobe, Xiao Zhou, and Takao Nishizeki, Total colourings of degenerate graphs, Combina-
torica 27 (2007), no. 2, 167-182.

Klaus Jansen and Petra Scheffler, Generalized coloring for tree-like graphs, Discrete Applied
Mathematics 75 (1997), 135-155.

Jeff Kahn, Asymptotics of the chromatic index for multigraphs, Journal of Combinatorial Theory,
Series B 68 (1996), no. 2, 233-254.

M. S. Krishnamoorthy, An NP-hard problem in bipartite graphs, SIGACT News 7 (1975), 26-26.

Daniel Leven and Zvi Galil, NP completeness of finding the chromatic index of reqular graphs,
Journal of Algorithms 4 (1983), no. 1, 35-44.

Daniel Lokshtanov, Daniel Marx, Saket Saurabh, et al., Lower bounds based on the exponential
time hypothesis, Bulletin of EATCS 3 (2013), no. 105.

Daéniel Marx, NP-completeness of list coloring and precoloring extension on the edges of planar
graphs, Journal of Graph Theory 49 (2005), 313-324.

Colin J.H. McDiarmid and Abdén Sanchez-Arroyo, Total colouring reqular bipartite graphs is
NP-hard, Discrete Mathematics 124 (1994), no. 1-3, 155-162.

D. Seese, Tree-partite graphs and the complexity of algorithms, Fundamentals of Computation
Theory (Lothar Budach, ed.), Lecture Notes in Computer Science, vol. 199, Springer Berlin /
Heidelberg, 1985, pp. 412-421.

V. G. Vizing, On an estimate of the chromatic class of a p-graph. (Russian), Diskret. Analiz 3
(1964), 25-30.

V. G. Vizing, Some unsovled problems in graph theory (Russian), Uspekhi Math. Nauk. 23
(1968), 117-134.

Xiao Zhou, Yuki Matsuo, and Takao Nishizeki, List total colorings of series-parallel graphs,
Journal of Discrete Algorithms 3 (2005), 47-60.

Xiao Zhou, Shin-ichi Nakano, and Takao Nishizeki, Edge-colouring partial k-trees, Journal of
Algorithms 21 (1996), 598-617.

17

