5,587 research outputs found

    On the capacity of fading channels with amplitude-limited inputs

    Get PDF
    We address the problem of finding the capacity of fading channels under the assumption of amplitude-limited inputs. Specifically, we show that if the fading coefficients have a finite support and the channel state information is only available at the receiver side, there is a unique input distribution that achieves the channel capacity and this input distribution is discrete with a finite number of mass points. © 2016 IEEE

    Low SNR Capacity of Noncoherent Fading Channels

    Full text link
    Discrete-time Rayleigh fading single-input single-output (SISO) and multiple-input multiple-output (MIMO) channels are considered, with no channel state information at the transmitter or the receiver. The fading is assumed to be stationary and correlated in time, but independent from antenna to antenna. Peak-power and average-power constraints are imposed on the transmit antennas. For MIMO channels, these constraints are either imposed on the sum over antennas, or on each individual antenna. For SISO channels and MIMO channels with sum power constraints, the asymptotic capacity as the peak signal-to-noise ratio tends to zero is identified; for MIMO channels with individual power constraints, this asymptotic capacity is obtained for a class of channels called transmit separable channels. The results for MIMO channels with individual power constraints are carried over to SISO channels with delay spread (i.e. frequency selective fading).Comment: submitted to IEEE I

    The Noncoherent Rician Fading Channel -- Part I : Structure of the Capacity-Achieving Input

    Full text link
    Transmission of information over a discrete-time memoryless Rician fading channel is considered where neither the receiver nor the transmitter knows the fading coefficients. First the structure of the capacity-achieving input signals is investigated when the input is constrained to have limited peakedness by imposing either a fourth moment or a peak constraint. When the input is subject to second and fourth moment limitations, it is shown that the capacity-achieving input amplitude distribution is discrete with a finite number of mass points in the low-power regime. A similar discrete structure for the optimal amplitude is proven over the entire SNR range when there is only a peak power constraint. The Rician fading with phase-noise channel model, where there is phase uncertainty in the specular component, is analyzed. For this model it is shown that, with only an average power constraint, the capacity-achieving input amplitude is discrete with a finite number of levels. For the classical average power limited Rician fading channel, it is proven that the optimal input amplitude distribution has bounded support.Comment: To appear in the IEEE Transactions on Wireless Communication

    Unified Capacity Limit of Non-coherent Wideband Fading Channels

    Full text link
    In non-coherent wideband fading channels where energy rather than spectrum is the limiting resource, peaky and non-peaky signaling schemes have long been considered species apart, as the first approaches asymptotically the capacity of a wideband AWGN channel with the same average SNR, whereas the second reaches a peak rate at some finite critical bandwidth and then falls to zero as bandwidth grows to infinity. In this paper it is shown that this distinction is in fact an artifact of the limited attention paid in the past to the product between the bandwidth and the fraction of time it is in use. This fundamental quantity, called bandwidth occupancy, measures average bandwidth usage over time. For all signaling schemes with the same bandwidth occupancy, achievable rates approach to the wideband AWGN capacity within the same gap as the bandwidth occupancy approaches its critical value, and decrease to zero as the occupancy goes to infinity. This unified analysis produces quantitative closed-form expressions for the ideal bandwidth occupancy, recovers the existing capacity results for (non-)peaky signaling schemes, and unveils a trade-off between the accuracy of approximating capacity with a generalized Taylor polynomial and the accuracy with which the optimal bandwidth occupancy can be bounded.Comment: Accepted for publication in IEEE Transactions on Wireless Communications. Copyright may be transferred without notic

    One-Bit Massive MIMO: Channel Estimation and High-Order Modulations

    Full text link
    We investigate the information-theoretic throughout achievable on a fading communication link when the receiver is equipped with one-bit analog-to-digital converters (ADCs). The analysis is conducted for the setting where neither the transmitter nor the receiver have a priori information on the realization of the fading channels. This means that channel-state information needs to be acquired at the receiver on the basis of the one-bit quantized channel outputs. We show that least-squares (LS) channel estimation combined with joint pilot and data processing is capacity achieving in the single-user, single-receive-antenna case. We also investigate the achievable uplink throughput in a massive multiple-input multiple-output system where each element of the antenna array at the receiver base-station feeds a one-bit ADC. We show that LS channel estimation and maximum-ratio combining are sufficient to support both multiuser operation and the use of high-order constellations. This holds in spite of the severe nonlinearity introduced by the one-bit ADCs

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer
    corecore