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Abstract—We address the problem of finding the capacity

of fading channels under the assumption of amplitude-limited

inputs. Specifically, we show that if the fading coefficients have a

finite support and the channel state information is only available

at the receiver side, there is a unique input distribution that

achieves the channel capacity and this input distribution is

discrete with a finite number of mass points.

I. INTRODUCTION

Capacity of channels with amplitude-limited inputs has been
studied for the first time by Smith in [1]. In his work, Smith
shows that the capacity of scalar Gaussian channels is achieved
by a unique input distribution and this distribution is discrete
with finite number of mass points. The capacity of fading
channels with amplitude-limited inputs has also been studied
previously in the literature for certain fading distributions
with different input constraints. For instance, the capacity
of Rayleigh fading channels where neither the transmitter
nor the receiver has the channel state information with an
average power constrained input is achieved by a discrete
distribution [2]. Capacity of Rician fading channels with inputs
having constraints on the second and the fourth moments is
achieved by a discrete input distribution as well [3]. In another
closely related work [4], the authors generalize the previous
results, and show that for any conditionally Gaussian channel
with amplitude-limited inputs, the channel capacity is achieved
by discrete input distributions.

In this paper, we consider the problem of finding the
capacity of fading channels with amplitude-limited inputs
where the fading distribution is arbitrary and the channel
inputs are amplitude-limited. We assume that the channel gains
are real, have finite support and are known at the receiver.
We show that the capacity achieving distribution is discrete
with a finite number of mass points. We note that the channel
model under consideration does not fall within the framework
of conditionally Gaussian channels studied in [4], hence its
results do not apply. In order to prove our results, we borrow
ideas and approach from [1, 5, 13]. Specifically, we show
that the capacity optimization problem is convex, then we
invoke the Karush-Kuhn-Tucker (KKT) Theorem to derive
the optimality conditions. The discreteness of the capacity-
achieving distribution is shown by adopting techniques from
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complex analysis as in [13] and [5] for scalar Gaussian
channels and multiple access channels, respectively.

The paper is organized as follows. In Section II, we present
the fading channel model under consideration. In Section III,
we provide the required definitions. In Section IV, we show
that the capacity is maximized by a unique input distribution.
Then, we show, in Section V, that this input distribution is
discrete, and we conclude the paper in Section VI with a brief
summary.

II. CHANNEL MODEL

We consider a fading channel model where the received
signal Y is given by

Y = ↵X +N (1)

where X is the channel input that is amplitude-constrained to
[�A, A], i.e., it has a probability distribution function FX(x)
that belongs to the class of probability distribution functions
FX such that for any FX 2 FX , FX(x) = 0 for any x < �A
and FX(x) = 1 for any x � A. The coefficient ↵ is the
fading channel gain with a probability distribution function
F↵(u). We assume that ↵ has a finite support, i.e., ↵ 2 [0, u

0

]

for some u
0

< 1, and that the channel state information is
available only at the receiver side. The noise N is Gaussian,
i.e., N ⇠ N (0,�2

), and it is independent for different uses
of the channel. We assume that the input X and the fading
coefficient ↵ are also independent.

We emphasize that this model differs from the previous
models studied in the literature. The most closely related one
is in [4] where the authors study the conditionally Gaus-
sian channels. When the fading gain is zero mean complex
Gaussian (i.e., for Rayleigh fading), the channel becomes
conditionally Gaussian, and the results of [4] apply. However,
here we consider fading channels with an arbitrary (but finite
support) distribution, hence our model does not fall within the
framework of [4].

The probability density function of the output is given by

fY (y;FX) =

Z u0

0

Z A

�A

PN (y � ux)dFX(x)dF↵(u), (2)

where PN (y�ux) = fY |X,↵(y|x, u) is the probability density
function of the channel output Y conditioned on specific
values of X and ↵, and fY (y;FX) is the probability density
function of the channel output Y when the input has a prob-
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ability distribution function FX . The existence of fY (y;FX)

is guaranteed by the existence of PN [6].
In the following, we derive bounds on the probability den-

sity function of the noise term PN (y�ux) and the conditional
probability density function fY |↵(y|u) for later use. It is
straightforward to show that, for u > 0, the probability density
function is bounded as follows

q(y, u)  PN (y � ux)  Q(y, u), (3)

where

q(y, u) =

(
k
1

exp(�k
2

(y � uA)2) if y  0,

k
1

exp(�k
2

(y + uA)

2

) if y > 0,
(4)

and

Q(y, u) =

8><>:
k
3

exp(�k
4

(y + uA)

2

) if y < �uA,

k
3

if y 2 [�uA, uA],

k
3

exp(�k
4

(y � uA)

2

) if y > uA,
(5)

for some finite and positive k
1

, k
2

, k
3

, and k
4

. As a result,
the conditional probability density function fY |↵(y|u) can be
bounded as well

�(y, u)  fY |↵(y|u)  �(y, u), (6)

where

�(y, u) = q(y, u), and �(y, u) = Q(y, u). (7)

III. DEFINITIONS AND PRELIMINARIES

The average mutual information between the input and the
output conditioned on the channel gain is defined as [7, 8]

IF
X

(X;Y |↵) ,
Z u0

0

IF
X

(X;Y |↵ = u)dF↵(u) (8)

where

I
F

X

(X;Y |↵=u),
Z 1

�1

Z A

�A

P
N

(y�ux) log

✓
P

N

(y�ux)
f

Y |↵(y|u;F
X

)

◆
dF

X

(x)dy,

(9)
and fY |↵(y|u;FX) is the conditional probability density func-
tion of the output which is defined as

fY |↵(y|u;FX) =

Z A

�A

PN (y � ux)dFX(x). (10)

We define the conditional entropy HF
X

(Y |↵) as

HF
X

(Y |↵) =
Z u0

0

HF
X

(Y |↵ = u)dF↵(u). (11)

where

H
F

X

(Y |↵=u), �
Z 1

�1
f
Y |↵(y|u;F

X

) log f
Y |↵(y|u;F

X

)dy. (12)

For noise with finite variance and bounded density function,
the conditional mutual information function can be written as

IF
X

(X;Y |↵) = HF
X

(Y |↵)�D, (13)

where D is the noise entropy

D , �
Z 1

�1
PN (z) logPN (z)dz. (14)

For Gaussian noise with mean 0 and variance �2, the entropy

is
D =

1

2

log

�
2⇡e�2

�
. (15)

The channel capacity is defined as

C = max

F
X

2F
X

IF
X

(X;Y |↵). (16)

We define the conditional mutual information density
iF (x|↵ = u) and the conditional entropy density hF (x|↵ = u)
both conditioned on a specific value of ↵ as

iF
X

(x|↵ = u) ,
Z 1

�1
PN (y � ux) log

PN (y � ux)

fY |↵(y|u;FX)

dy, (17)

hF
X

(x|↵ = u) , �
Z 1

�1
PN (y � ux) log fY |↵(y|u;FX)dy. (18)

Thus, the following equation holds

iF
X

(x|↵ = u) = hF
X

(x|↵ = u)�D. (19)

Define the conditional mutual information density iF
X

(x|↵)
and the conditional entropy density as hF

X

(x|↵)

iF
X

(x|↵) ,
Z u0

0

iF
X

(x|↵ = u)dF↵(u), (20)

hF
X

(x|↵) ,
Z u0

0

hF
X

(x|↵ = u)dF↵(u). (21)

Thus, we can write

iF
X

(x|↵) = hF
X

(x|↵)�D, (22)

IF
X

(X;Y |↵) =
Z A

�A

iF
X

(x|↵)dFX(x), (23)

HF
X

(Y |↵) =
Z A

�A

hF
X

(x|↵)dFX(x). (24)

These equations hold by the definition of the information
density and the definition of the entropy density. We note that
in the previous expressions the order of integrals has been
changed which can be justified using Fubini’s theorem by
showing that the mutual information density and the entropy
density are finite as shown in Lemma 1.

Lemma 1. The conditional entropy HF
X

(Y |↵) and the con-
ditional mutual information IF

X

(X;Y |↵) are finite.

Proof: It is sufficient to show the finiteness of HF
X

(Y |↵)
as the difference between IF

X

(X;Y |↵) and HF
X

(Y |↵) is just
a constant. We can write

|H
F

X

(Y |↵)|

=

����

Z
u0

0
H

F

X

(Y |↵ = u)dF
↵

(u)

����


Z

A

�A

Z
u0

0

Z 1

�1

��P
N

(y � ux) log(f
Y |↵(y|u;F

X

))

�� dydF
↵

(u)dF
X

(x)


Z

A

�A

Z
u0

0

Z 1

�1
P

N

(y � ux)[� log(f
Y |↵(y|u;F

X

))

+ 2| log(k3)|]dydF↵

(u)dF
X

(x)


Z

A

�A

Z
u0

0

Z 1

�1
Q(y, u)[� log(q(y, u)) + 2| log(k3)|]dydF↵

(u)dF
X

(x).

(25)

The right hand side can be easily shown to be finite. Hence
we can conclude that HF

X

(Y |↵) and IF
X

(X;Y |↵) are both
finite.
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IV. CAPACITY OPTIMIZATION PROBLEM

In this section, we show that the mutual information is a
strictly concave, weakly differentiable, and continuous func-
tion of the input distribution.

A. The Mutual Information is a Continuous Function of the
Distribution

The conditional mutual information is

IF
X

(X;Y |↵) = HF
X

(Y |↵)�D, (26)

and the conditional entropy is

HF
X

(Y |↵) =
Z u0

0

HF
X

(Y |↵ = u)dF↵(u). (27)

In order to show the continuity of HF
X

(Y |↵), we show that for
any sequence of the input distribution functions, H

F
(n)
X

(Y |↵ =

u) is bounded by an integrable function and hence we can
invoke the Dominated Convergence Theorem. That is, let us fix
a sequence {F (n)

X (x)}n�1

in FX such that F (n)
X (x) ! FX(x)

for some FX 2 FX . From (6),���� fY |↵(y|u;F
(n)
X ) log

⇣
fY |↵(y|u;F

(n)
X )

⌘ ���
 �(y, u)

h
� log(�(y, u)) + 2| log(k

3

)|
i
.

As a result

|H
F

(n)
X

(Y |↵ = u)|

=

����Z 1

�1
�fY |↵(y|u;F

(n)
X ) log

⇣
fY |↵(y|u;F

(n)
X )

⌘
dy

���� ,

Z 1

�1

����fY |↵(y|u;F
(n)
X ) log

⇣
fY |↵(y|u;F

(n)
X )

⌘��� dy,

Z 1

�1
�(y, u) [� log(�(y, u)) + 2| log(k

3

)|] dy < 1.

It is easy to verify that |
R u0

0

H
F

(n)
X

(Y |↵ = u)dF↵(u)| < 1.
Thus, we can invoke the Dominated Convergence Theorem to
show that

lim

n!1
H

F
(n)
X

(Y |↵) = lim

n!1

Z u0

0

H
F

(n)
X

(Y |↵ = u)dF↵(u),

=

Z u0

0

lim

n!1
H

F
(n)
X

(Y |↵ = u)dF↵(u),

= HF
X

(Y |↵).
Hence the conditional entropy is a continuous function of the
input distribution. Since the difference between the conditional
entropy and the conditional mutual information is just a
constant, we conclude that the conditional mutual information
is also continuous.

B. The Mutual Information is a Strictly Concave Function of
the Input Distribution

We have

IF
X

(Y ;X|↵) = HF
X

(Y |↵)�D. (28)

Hence, it is enough to show that the conditional entropy
HF

X

(Y |↵) is a strictly concave function of the distribution
to conclude the strict concavity of the mutual information

function. The conditional entropy is given by

HF
X

(Y |↵) =
Z u0

0

HF
X

(Y |↵ = u)dF↵(u). (29)

To show the strict concavity of the conditional entropy, we
first show that HF

X

(Y |↵ = u) is strictly concave for every u
in the support of the random variable ↵ by considering

Y = uX +N. (30)

for a fixed u. For u > 0, we define a new random variable
Y 0

=

Y
u , i.e.,

Y 0
= X +

N

u
. (31)

We assume that F↵(0) 6= 1, i.e., the measure of the set of the
nonzero values of the channel coefficients is not zero. Thus, the
equivalent model in (31) is the same as the scalar Gaussian
channel model studied by Smith in [9] which leads to the
strict concavity of the conditional entropy for a given u, i.e.,
HF

X

(Y |↵ = u) is a strictly concave function. As a result, we
conclude the strict concavity of the conditional output entropy
since positive weighted sum of strictly concave functions is
strictly concave [10].

C. The Mutual Information is a Weakly Differentiable Func-
tion

Lemma 2. The mutual information function I(X;Y |↵) is a
weakly differentiable function and its weak derivative is

I 0F1,F2
(X;Y |↵) =

Z A

�A

iF1(x|↵)dF2

(x)�IF1(X;Y |↵). (32)

Proof: The proof follows similar line of arguments as
in [1, 5]. The details are provided in [6].

We note that similar results up to this point has been
reported before in [11] (which considers a more general set-
up), however, for the sake of completeness and in order to
establish notation, and also to make the paper self contained,
we have included the required definitions and proofs.

Theorem 1. C, the capacity of the channel, is achieved by a
unique probability distribution function F

0

in FX , i.e.,

C , max

F
X

inF
X

I(X;Y |↵). (33)

Furthermore, the necessary and sufficient conditions on the
optimal input distribution are

iF0(x|↵)  IF0(X;Y |↵), 8x 2 [�A,A], (34)
iF0(x|↵) = IF0(X;Y |↵), 8x 2 E

0

. (35)

Proof: The space FX is convex and compact in some
topology [1]. Earlier in this section we showed that the
function I : FX ! R is strictly concave, continuous, and
weakly differentiable in FX . By invoking the KKT conditions
and following the standard arguments as in Smith [1], the
necessary and sufficient conditions can be derived. The details
are provided in [6].

V. DISCRETENESS OF THE OPTIMAL DISTRIBUTION

In this subsection, we prove that the optimal distribution
that maximizes the mutual information function is discrete
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with a finite number of mass points. In a nutshell, we show
that the extension of the conditional entropy to the complex
plane is well defined and this extension is analytic. Then, we
assume that the set of points of increase of the input proba-
bility distribution function E

0

contains an infinite number of
elements. Finally, Bolzano-Weierstrass and Identity Theorems
are invoked to show that the assumption of the non-finiteness
of E

0

leads to a contradiction.

The conditional entropy density is given by

hF0(x|↵) =
Z u0

0

hF0(x|↵ = u)dF↵(u). (36)

We first extend hF0(x|↵ = u) to the complex plane. For any
z = ⌘ + i⇣ 2 C and u 2 [0, u

0

],

|h(z| ↵ = u)|


Z 1

�1
|PN (y � uz)|| log fY |↵(y|u;FX)|dy,

=

Z 1

�1

1p
2⇡�2

����exp✓�(y � uz)2

2⇡�2

◆����
| log fY |↵(y|u;FX)|dy,


Z 1

�1

1p
2⇡�2

����exp✓�(y � u⌘ � iu⇣)2

2⇡�2

◆����h
� log(�(y, u)) + 2| log(k

3

)|
i
dy,

 1p
2⇡�2

exp

✓
u⇣2

2⇡�2

◆Z 1

�1

����exp✓�(y � u⌘)2

2⇡�2

◆����⇥
� log(k

1

) + k
2

|(y � uz)2|+ 2| log(k
3

)|
⇤
dy,

 exp

✓
u⇣2

2⇡�2

◆Z 1

�1
|PN (y � u⌘)|h

� log(k
1

) + k
2

|(y � uz)2|+ 2| log(k
3

)|
i
dy < 1.

(37)

Hence |h(z|↵ = u)| is finite for any |z| < 1. Thus, the
extension of hF

X

(z|↵ = u) is well defined.

Since 9B < 1, such that 8u 2 [0, u
0

] we have
|hF

X

(z|↵ = u)|  B, i.e.,

|hF0(z|↵)| =

����Z u0

0

hF
X

(z|↵ = u)dF↵(u)

���� ,


Z u0

0

|hF
X

(z|↵ = u)| dF↵(u),

 B

Z u0

0

dF↵(u) = B < 1,

hence hF0(z|↵) has an extension to the complex plane as well.

Since PN (·) is an analytic function, using the Cauchy
Integral Theorem [12] we haveI

!

PN (z)dz = 0, (38)

where ! is any simple closed contour on the complex plane.
To show the analyticity of the conditional entropy density, we
use Morera’s Theorem, i.e., by showing that the integration
of the conditional entropy over any simple closed contour is

zero, we can conclude that the function is analytic. That is,I
!

hF
X

(z|↵)dz

=

I
!

Z u0

0

Z 1

�1
�P

N

(y�uz) log(f
Y |↵(y|u;F

X

))dF
↵

(u)dydz,

(a)
=

Z u0

0

Z 1

�1
� log(f

Y |↵(y|u;F
X

))

I
!

P
N

(y�uz)dzdF
↵

(u)dy=0,

(39)
where the order of integrals in (a) is changed by invok-
ing the Fubini’s Theorem that requires the finiteness ofH
!
|hF

X

(z|↵)|dz. This can be justified as follows: we define
M! as

M! = max

z2!
|hF

X

(z|↵)| . (40)

M! exists since the conditional entropy |hF
X

(z|↵)| is
bounded, continuous in z, and the contour ! is closed. Hence,����I

!

hF
X

(z|↵)dz
����

=

����I
!

Z u0

0

Z 1

�1
�P

N

(y�uz) log(f
Y |↵(y|u;F

X

))dF
↵

(u)dydz

���� ,

I
!

����Z 1

�1

Z u0

0

�P
N

(y�uz) log(f
Y |↵(y|u;F

X

))dF
↵

(u)dy

���� dz,

I
!

M
!

dz,

M
!

l
!

<1, (41)

where l! is the length of ! which is finite as ! is a closed
contour.

Therefore, we establish that the extension of the conditional
mutual information density iF0(z|↵) to the complex plane is
well defined (since its difference with the entropy density is a
constant), and it is analytic.

We prove the discreteness of the capacity-achieving distri-
bution by a contradiction. We first assume that the set of points
of increase E

0

has an infinite cardinality. From the optimality
condition in (35) we haveZ u0

0

+

(iF0(x|↵ = u)� IF0(X;Y |↵ = u)) dF↵(u) = 0, (42)

8x 2 E
0

. Since E
0

is bounded, it has a limit point (Bolzano-
Weierstrass Theorem). The conditional mutual information
density iF0(z|↵) is analytic on the entire complex plane. That
is, we can invoke the Identity Theorem to show that the
optimality condition isZ u0

0

+

(iF0(x|↵ = u)� IF0(X;Y |↵ = u)) dF↵(u) = 0, (43)

8x 2 R, and henceZ u0

0

+

 
�
Z 1

�1
PN (y � ux) log fY |↵(y|u)dy �D

� IF0(X;Y |↵ = u)

!
dF↵(u) = 0, 8x 2 R. (44)

We note that the exclusion of 0 from the bound of the integra-
tion in (43) does not affect the integral since the mutual infor-
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mation is zero if u = 0. We now use the approach in [5, 13].
Let us define L(u) = IF0(X;Y |↵ = u) + 1

2

log(2⇡�2

) and
⇢(y, u) , log fY |↵(y|u) + L(u). Also define the sets

⌦

+

u = {y : ⇢(y, u) � 0}, and ⌦

�
u = {y : ⇢(y, u) < 0}.

(45)
We can then write,Z u0

0

+

Z
⌦

+
u

PN (y � ux)⇢(y, u)dy

+

Z
⌦

�
u

PN (y � ux)⇢(y, u)dy

�
dF↵(u) = 0. (46)

For the set ⌦

+

u , we have ⇢(y, u)  log(�(y, u)) + L(u) 
log(k

3

) + L(u). We define l as

l = max

u2[0,u0]

2uA+

s
log(k

3

) + L(u)

k
4

log(e)
. (47)

Clearly, ⌦+

u ✓ [�l, l]. Therefore,Z
⌦

+
u

PN (y � ux)⇢(y, u)dy


Z l

�l

PN (y � ux)⇢(y, u)dy,

 (log(k
3

(u)) + L(u))

Z l

�l

Q(y � ux)dy,

(48)
which can be made arbitrarily small by choosing large values
for x.

On the other hand for x > l +A,Z
⌦

�
u

PN (y � ux)⇢(y, u)dy

(a)


Z 1

l

PN (y � ux)⇢(y, u)dy,


Z 1

l

PN (y � ux)
h
log(�(y, u)) + L(u)

i
dy,

(b)
<

Z x+A

x�A

q(A, u)
h
log(�(x�A, u)) + L(u)

i
dy,

= 2Aq(A, u)
h
log(�(x�A, u)) + L(u)

i
< 0

(49)
where (a) follows since [l,1) ⇢ ⌦

�
u while the integrand is

negative, and (b) follows since q(A, u)  PN (y � ux) and it
is nonzero on its support by definition in (6), also the function
log(�(y, u))+L(u) is monotonically decreasing in y for y > l.

From (48) and (49), one can argue that 8u 2 [0, u
0

], there
exists an x 2 R such that the integration in (44) is strictly
less than zero which contradicts with the optimality condition
in (46), hence the set E

0

cannot have infinite number of mass
points concluding the proof of the desired result.

Finally, we note that the channel capacity can be computed
by finding the optimal input distribution and then evaluating
the mutual information corresponding to this distribution. As
we have shown, the capacity optimization problem is convex
since the space of input distribution functions is convex and
the mutual information is strictly concave. We also have

shown that the capacity is achieved by a discrete distribution
with a finite number of mass points. Thus, the problem of
finding the optimal input distribution boils down to a finite-
dimensional convex optimization problem that aims to find
the location of mass points and the associated probabilities
corresponding to this distribution. To do this, an efficient
numerical optimization algorithm can be developed which
iterates over the number of mass points and its associated
probabilities until the optimality conditions are satisfied and
hence the optimal input distribution is found (similar to the
approach in [1]).

VI. CONCLUSIONS

We have studied the capacity of fading channels where the
channel gain is only available at the receiver and the input is
amplitude limited. We have shown that if the fading gain fol-
lows an arbitrary distribution with a finite support, the channel
channel capacity is achieved by a unique optimal distribution
and this distribution is discrete with a finite number of mass
points.
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