10,877 research outputs found

    On Capacity of the Dirty Paper Channel with Fading Dirt in the Strong Fading Regime

    Full text link
    The classical writing on dirty paper capacity result establishes that full interference pre-cancellation can be attained in Gelfand-Pinsker problem with additive state and additive white Gaussian noise. This result holds under the idealized assumption that perfect channel knowledge is available at both transmitter and receiver. While channel knowledge at the receiver can be obtained through pilot tones, transmitter channel knowledge is harder to acquire. For this reason, we are interested in characterizing the capacity under the more realistic assumption that only partial channel knowledge is available at the transmitter. We study, more specifically, the dirty paper channel in which the interference sequence in multiplied by fading value unknown to the transmitter but known at the receiver. For this model, we establish an approximate characterization of capacity for the case in which fading values vary greatly in between channel realizations. In this regime, which we term the strong fading regime, the capacity pre-log factor is equal to the inverse of the number of possible fading realizations

    Interference Alignment for the Multi-Antenna Compound Wiretap Channel

    Full text link
    We study a wiretap channel model where the sender has MM transmit antennas and there are two groups consisting of J1J_1 and J2J_2 receivers respectively. Each receiver has a single antenna. We consider two scenarios. First we consider the compound wiretap model -- group 1 constitutes the set of legitimate receivers, all interested in a common message, whereas group 2 is the set of eavesdroppers. We establish new lower and upper bounds on the secure degrees of freedom. Our lower bound is based on the recently proposed \emph{real interference alignment} scheme. The upper bound provides the first known example which illustrates that the \emph{pairwise upper bound} used in earlier works is not tight. The second scenario we study is the compound private broadcast channel. Each group is interested in a message that must be protected from the other group. Upper and lower bounds on the degrees of freedom are developed by extending the results on the compound wiretap channel.Comment: Minor edits. Submitted to IEEE Trans. Inf. Theor

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles
    • …
    corecore